Beyond silicon: Thin-film tandem as an opportunity for photovoltaics supply chain diversification and faster power system decarbonization out to 2050

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Alessandro Martulli , Fabrizio Gota , Neethi Rajagopalan , Toby Meyer , Cesar Omar Ramirez Quiroz , Daniele Costa , Ulrich W. Paetzold , Robert Malina , Bart Vermang , Sebastien Lizin
{"title":"Beyond silicon: Thin-film tandem as an opportunity for photovoltaics supply chain diversification and faster power system decarbonization out to 2050","authors":"Alessandro Martulli ,&nbsp;Fabrizio Gota ,&nbsp;Neethi Rajagopalan ,&nbsp;Toby Meyer ,&nbsp;Cesar Omar Ramirez Quiroz ,&nbsp;Daniele Costa ,&nbsp;Ulrich W. Paetzold ,&nbsp;Robert Malina ,&nbsp;Bart Vermang ,&nbsp;Sebastien Lizin","doi":"10.1016/j.solmat.2024.113212","DOIUrl":null,"url":null,"abstract":"<div><div>In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This coincided with PV cost reduction, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2–4 % and 0.5–2 % higher costs per kWh and 37–40 % and 32–35 % less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2 % higher) and a 20 % GHG emissions advantage per kWh in 2050.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113212"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This coincided with PV cost reduction, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2–4 % and 0.5–2 % higher costs per kWh and 37–40 % and 32–35 % less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2 % higher) and a 20 % GHG emissions advantage per kWh in 2050.
超越硅:薄膜串联是光伏供应链多样化和 2050 年前电力系统更快去碳化的契机
在过去十年中,光伏技术的主导技术--硅的制造能力越来越多地集中在中国。这在降低光伏成本的同时,也给光伏供应链安全带来了风险。作为传统硅基光伏技术的替代品,新型过氧化物串联光伏技术的最新进展为光伏制造能力的多样化和提高太阳能光伏的温室气体排放效益提供了机遇。在此背景下,我们估算了不同生产地点(中国、美国、欧盟)的一系列已商业化和新兴光伏技术在住宅和公用事业规模上当前和未来的成本竞争力和温室气体排放量。我们发现,欧盟和美国生产的薄膜串联技术在住宅和公用事业规模上的每千瓦时成本分别高出 2-4% 和 0.5-2%,每千瓦时温室气体排放量分别低 37-40% 和 32-35%。我们的预测表明,到 2050 年,它们还将保持具有竞争力的成本(最多高出 2%)和每千瓦时 20% 的温室气体排放优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信