Creating an intermediate energy band to boost the photoelectrochemical efficiency of TiO2 for solar-driven hydrogen production

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Ranjith Balu , Gautham Devendrapandi , Lalitha Gnanasekaran , P.C. Karthika , Omar H. Abd-Elkader , Woo Kyoung Kim , Vasudeva Reddy Minnam Reddy , Monit Kapoor , Suresh Singh , Mahimaluru Lavanya
{"title":"Creating an intermediate energy band to boost the photoelectrochemical efficiency of TiO2 for solar-driven hydrogen production","authors":"Ranjith Balu ,&nbsp;Gautham Devendrapandi ,&nbsp;Lalitha Gnanasekaran ,&nbsp;P.C. Karthika ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Woo Kyoung Kim ,&nbsp;Vasudeva Reddy Minnam Reddy ,&nbsp;Monit Kapoor ,&nbsp;Suresh Singh ,&nbsp;Mahimaluru Lavanya","doi":"10.1016/j.solmat.2024.113226","DOIUrl":null,"url":null,"abstract":"<div><div>The utilization of photoelectrochemical processes for hydrogen generation from water and solar energy offers a promising avenue to replace non-renewable energy sources. Nevertheless, achieving high-performance photoanode electrodes poses a significant challenge. In this study, we present the synthesis cerium and chromium-doped TiO<sub>2</sub> (CeCrTiO<sub>2</sub>) is produced through a simple, scalable, and cost-effective hydrothermal method on a fluorine-doped tin oxide (FTO) substrate. the introduction of Ce and Cr impurities is highlighted for its role in creating an impurity band within CeCrTiO<sub>2</sub>. This impurity band is instrumental in enhancing the separation and movement of electrons and holes, contributing to the improved performance of CeCrTiO<sub>2</sub> as a photoanode in photoelectrochemical applications. Hence, the photocurrent density value of CeCrTiO<sub>2</sub> is 4.5 times higher than that of bare TiO<sub>2</sub>. This suggests that CeCrTiO<sub>2</sub> exhibits improved efficiency in generating a photocurrent when exposed to light, indicating enhanced photoelectrochemical performance. The amount of hydrogen produced by CeCrTiO<sub>2</sub> is noted to be 4.88 times greater than that of bare TiO<sub>2</sub>. This highlights the material's effectiveness in harnessing solar energy to drive the water-splitting reaction, leading to a higher yield of hydrogen gas. The synthesis of CeCrTiO<sub>2</sub> through a hydrothermal method results in a photoanode with significantly enhanced performance, positioning it as a promising candidate for advancing photoelectrochemical processes aimed at replacing non-renewable energy sources.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113226"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005385","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The utilization of photoelectrochemical processes for hydrogen generation from water and solar energy offers a promising avenue to replace non-renewable energy sources. Nevertheless, achieving high-performance photoanode electrodes poses a significant challenge. In this study, we present the synthesis cerium and chromium-doped TiO2 (CeCrTiO2) is produced through a simple, scalable, and cost-effective hydrothermal method on a fluorine-doped tin oxide (FTO) substrate. the introduction of Ce and Cr impurities is highlighted for its role in creating an impurity band within CeCrTiO2. This impurity band is instrumental in enhancing the separation and movement of electrons and holes, contributing to the improved performance of CeCrTiO2 as a photoanode in photoelectrochemical applications. Hence, the photocurrent density value of CeCrTiO2 is 4.5 times higher than that of bare TiO2. This suggests that CeCrTiO2 exhibits improved efficiency in generating a photocurrent when exposed to light, indicating enhanced photoelectrochemical performance. The amount of hydrogen produced by CeCrTiO2 is noted to be 4.88 times greater than that of bare TiO2. This highlights the material's effectiveness in harnessing solar energy to drive the water-splitting reaction, leading to a higher yield of hydrogen gas. The synthesis of CeCrTiO2 through a hydrothermal method results in a photoanode with significantly enhanced performance, positioning it as a promising candidate for advancing photoelectrochemical processes aimed at replacing non-renewable energy sources.

Abstract Image

创建中间能带,提高二氧化钛的光电化学效率,促进太阳能制氢
利用光电化学过程从水和太阳能中制氢,为替代不可再生能源提供了一条前景广阔的途径。然而,实现高性能光阳极电极是一项重大挑战。在本研究中,我们介绍了在掺氟氧化锡(FTO)基底上通过简单、可扩展且经济有效的水热法合成掺铈和铬的二氧化钛(CeCrTiO2)的过程。该杂质带有助于加强电子和空穴的分离和移动,从而提高 CeCrTiO2 作为光阳极在光电化学应用中的性能。因此,CeCrTiO2 的光电流密度值是裸 TiO2 的 4.5 倍。这表明 CeCrTiO2 在光照下产生光电流的效率有所提高,从而增强了光电化学性能。CeCrTiO2 产生的氢气量是裸 TiO2 的 4.88 倍。这凸显了该材料在利用太阳能驱动分水反应方面的有效性,从而提高了氢气产量。通过水热法合成 CeCrTiO2 可得到性能显著增强的光阳极,使其成为推动旨在替代不可再生能源的光电化学过程的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信