A coupled optical-thermal-fluid-structural analysis of parabolic trough solar collector by deformation coupling instant ray-tracing multiple iteration method

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Yunyi Han , Lu Li , Shuoshuo Wang , Zhang Bai , Qi Li
{"title":"A coupled optical-thermal-fluid-structural analysis of parabolic trough solar collector by deformation coupling instant ray-tracing multiple iteration method","authors":"Yunyi Han ,&nbsp;Lu Li ,&nbsp;Shuoshuo Wang ,&nbsp;Zhang Bai ,&nbsp;Qi Li","doi":"10.1016/j.solmat.2024.113221","DOIUrl":null,"url":null,"abstract":"<div><div>Parabolic trough solar collectors (PTC) have been widely applied in concentrating solar power generation and solar heating. During typical operation processes, due to the interaction between the bending deformation and the non-uniform solar flux concentration of the receiver tube, the PTC presents a complex multi-physical coupling phenomenon, which seriously influences the concentrating characteristic and solar-to-thermal conversion efficiency. In order to improve the accuracy of multiphysics simulation, a fully coupled optical-thermal-fluid-structural simulation model is developed by considering the novel structure-deformation coupling instant ray-tracing method. Based on the case study refers to the Euro Trough 150 type collector and the Schott PTR70 type solar receiver, the optical-thermal-fluid-structural coupling characteristics of PTC has been comprehensively investigated. The results indicate that the calculation error of the receiver tube deformation decreases by 16 %, indicating significant improvement in multiphysics coupling. Under the dynamic tracking process, increasing the tracking angle of the adopted PTC module to 90° from 0°results in a corresponding peak solar flux improvement to 73.84 kW/m<sup>2</sup> from 72.41 kW/m<sup>2</sup>. Due to the thermal stress and gravity, the maximum concavity decreases to 6.64 mm from 9.58 mm and the maximum convexity increases to 1.89 mm from 1.13 mm. This new method provides a feasible reference for optimization and regulation of PTCs.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"279 ","pages":"Article 113221"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824005336","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Parabolic trough solar collectors (PTC) have been widely applied in concentrating solar power generation and solar heating. During typical operation processes, due to the interaction between the bending deformation and the non-uniform solar flux concentration of the receiver tube, the PTC presents a complex multi-physical coupling phenomenon, which seriously influences the concentrating characteristic and solar-to-thermal conversion efficiency. In order to improve the accuracy of multiphysics simulation, a fully coupled optical-thermal-fluid-structural simulation model is developed by considering the novel structure-deformation coupling instant ray-tracing method. Based on the case study refers to the Euro Trough 150 type collector and the Schott PTR70 type solar receiver, the optical-thermal-fluid-structural coupling characteristics of PTC has been comprehensively investigated. The results indicate that the calculation error of the receiver tube deformation decreases by 16 %, indicating significant improvement in multiphysics coupling. Under the dynamic tracking process, increasing the tracking angle of the adopted PTC module to 90° from 0°results in a corresponding peak solar flux improvement to 73.84 kW/m2 from 72.41 kW/m2. Due to the thermal stress and gravity, the maximum concavity decreases to 6.64 mm from 9.58 mm and the maximum convexity increases to 1.89 mm from 1.13 mm. This new method provides a feasible reference for optimization and regulation of PTCs.
利用变形耦合瞬时光线跟踪多重迭代法对抛物槽式太阳能集热器进行光-热-流体-结构耦合分析
抛物面槽式太阳能集热器(PTC)已广泛应用于聚光太阳能发电和太阳能供热领域。在典型的运行过程中,由于受光管的弯曲变形和非均匀太阳光通量集中之间的相互作用,抛物面槽式太阳能集热器呈现出复杂的多物理场耦合现象,严重影响了其聚光特性和光热转换效率。为了提高多物理场仿真的精度,通过考虑新颖的结构-变形耦合瞬时光线跟踪方法,建立了光-热-流-结构全耦合仿真模型。以欧洲槽式 150 型集热器和肖特 PTR70 型太阳能接收器为例,全面研究了 PTC 的光-热-流-结构耦合特性。结果表明,接收管变形的计算误差减少了 16%,表明多物理场耦合有了显著改善。在动态跟踪过程中,采用的 PTC 模块的跟踪角从 0°增加到 90°,相应的峰值太阳通量从 72.41 kW/m2 提高到 73.84 kW/m2。由于热应力和重力的影响,最大凹度从 9.58 mm 减小到 6.64 mm,最大凸度从 1.13 mm 增加到 1.89 mm。这种新方法为 PTC 的优化和调节提供了可行的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信