A study on the fractional-order COVID-19 SEIQR model and parameter analysis using homotopy perturbation method

Q1 Mathematics
Mominul Islam, M. Ali Akbar
{"title":"A study on the fractional-order COVID-19 SEIQR model and parameter analysis using homotopy perturbation method","authors":"Mominul Islam,&nbsp;M. Ali Akbar","doi":"10.1016/j.padiff.2024.100960","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we present a fractional-order susceptible-exposed-infected-quarantine-recovered (SEIQR) model to analyze the dynamics of the COVID-19 pandemic. The model includes susceptible (<em>S</em>), exposed (<em>E</em>), infected (<em>I</em>), quarantined (<em>Q</em>), and recovered (<em>R</em>) populations and uses a fractional-order differential equation to provide a further accurate representation of the disease's progression. We employ the homotopy perturbation method (HPM) to derive analytical solutions and the Runge-Kutta fourth-order (RK4) method to obtain numerical solutions. The results indicate that the fractional-order model, particularly for a fractional parameter α = 0.40, provides better accuracy and stability compared to the classical integer-order model. This study highlights the importance of fractional-order modeling in understanding the spread of COVID-19 and suggests its potential application in predicting and controlling future epidemics.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100960"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a fractional-order susceptible-exposed-infected-quarantine-recovered (SEIQR) model to analyze the dynamics of the COVID-19 pandemic. The model includes susceptible (S), exposed (E), infected (I), quarantined (Q), and recovered (R) populations and uses a fractional-order differential equation to provide a further accurate representation of the disease's progression. We employ the homotopy perturbation method (HPM) to derive analytical solutions and the Runge-Kutta fourth-order (RK4) method to obtain numerical solutions. The results indicate that the fractional-order model, particularly for a fractional parameter α = 0.40, provides better accuracy and stability compared to the classical integer-order model. This study highlights the importance of fractional-order modeling in understanding the spread of COVID-19 and suggests its potential application in predicting and controlling future epidemics.
分数阶 COVID-19 SEIQR 模型研究及同调扰动法参数分析
在本文中,我们提出了一个分数阶易感-暴露-感染-隔离-恢复(SEIQR)模型来分析 COVID-19 大流行的动态。该模型包括易感人群(S)、暴露人群(E)、感染人群(I)、检疫人群(Q)和康复人群(R),并使用分数阶微分方程来进一步精确表示疾病的发展过程。我们采用同调扰动法(HPM)得出解析解,并采用 Runge-Kutta 四阶法(RK4)获得数值解。结果表明,与经典整数阶模型相比,分数阶模型,尤其是分数参数 α = 0.40 时,具有更好的精度和稳定性。这项研究强调了分数阶模型在理解 COVID-19 传播方面的重要性,并提出了其在预测和控制未来流行病方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信