Innovative approache for the nonlinear atangana conformable Klein-Gordon equation unveiling traveling wave patterns

Q1 Mathematics
Hadi Rezazadeh , Mohammad Ali Hosseinzadeh , Lahib Ibrahim Zaidan , Fatima SD. Awad , Fiza Batool , Soheil Salahshour
{"title":"Innovative approache for the nonlinear atangana conformable Klein-Gordon equation unveiling traveling wave patterns","authors":"Hadi Rezazadeh ,&nbsp;Mohammad Ali Hosseinzadeh ,&nbsp;Lahib Ibrahim Zaidan ,&nbsp;Fatima SD. Awad ,&nbsp;Fiza Batool ,&nbsp;Soheil Salahshour","doi":"10.1016/j.padiff.2024.100935","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of current work is to establish novel traveling wave solutions of the nonlinear Atangana conformable Klein - Gordon equation using a new extended direct algebraic technique. The Klein - Gordon equation is the relativistic state of the Schrödinger equation with a second - order time derivative and zero spin. Complex wave variable transformation is used to convert Atangana conformable nonlinear differential equation into an ordinary differential equation. Using the proposed technique based on Maple software structure, various types of solutions, such as, generalized trigonometric, generalized hyperbolic, and exponential functions, are established. When special parameteric values are considered for this method, solitary wave solutions can be obtained through other methods, such as the (<span><math><mfrac><msup><mi>G</mi><mo>′</mo></msup><mi>G</mi></mfrac></math></span>)-expansion method, the modified Kudryashov method, the sub-equation method, and so forth. A physical explanation is provided for the solutions under consideration to enhance comprehension of the physical phenomena resulting from the obtained solutions, provided that the physical parameters are set appropriately using 3D, 2D, and contour simulations. The results demonstrated that the new extended direct algebraic method provides a more potent mathematical tool for solving numerous more nonlinear partial differential equations with the aid of symbolic computation.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100935"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of current work is to establish novel traveling wave solutions of the nonlinear Atangana conformable Klein - Gordon equation using a new extended direct algebraic technique. The Klein - Gordon equation is the relativistic state of the Schrödinger equation with a second - order time derivative and zero spin. Complex wave variable transformation is used to convert Atangana conformable nonlinear differential equation into an ordinary differential equation. Using the proposed technique based on Maple software structure, various types of solutions, such as, generalized trigonometric, generalized hyperbolic, and exponential functions, are established. When special parameteric values are considered for this method, solitary wave solutions can be obtained through other methods, such as the (GG)-expansion method, the modified Kudryashov method, the sub-equation method, and so forth. A physical explanation is provided for the solutions under consideration to enhance comprehension of the physical phenomena resulting from the obtained solutions, provided that the physical parameters are set appropriately using 3D, 2D, and contour simulations. The results demonstrated that the new extended direct algebraic method provides a more potent mathematical tool for solving numerous more nonlinear partial differential equations with the aid of symbolic computation.
揭示行波模式的非线性阿坦加纳共形克莱因-戈登方程创新方法
当前工作的目的是利用一种新的扩展直接代数技术,建立非线性阿坦加纳共形克莱因-戈登方程的新型行波解。克莱因-戈登方程是具有二阶时间导数和零自旋的薛定谔方程的相对论状态。复波变量变换用于将阿坦加纳符合非线性微分方程转换为常微分方程。利用基于 Maple 软件结构的拟议技术,建立了各种类型的解,如广义三角函数、广义双曲函数和指数函数。当考虑到该方法的特殊参数值时,孤波解可通过其他方法获得,如(G′G)展开法、修正库德里亚肖夫法、子方程法等。在利用三维、二维和等值线模拟对物理参数进行适当设置的前提下,为所考虑的解提供了物理解释,以加深对所获解产生的物理现象的理解。结果表明,新的扩展直接代数方法为借助符号计算求解更多的非线性偏微分方程提供了更有力的数学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信