{"title":"Analyzing coherent structures in the tropical cyclone boundary layer using large eddy simulations","authors":"","doi":"10.1016/j.tcrr.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Turbulence within the tropical cyclone boundary layer plays a crucial role in the exchange of heat, moisture, and momentum between the surface and the atmosphere. This study investigates the characteristics of coherent structures, specifically streaks and rolls, using large eddy simulations. Our results highlight significant differences across the three radius cases, with smaller radius exhibiting more intense and organized turbulence and streak/roll structures. Our analyses reveal that thermodynamic conditions significantly impact the timing of initial streak/roll development but do not affect their intensity in the steady state. Wind structures closer to the tropical cyclone center lead to stronger and more rapidly developing streaks/rolls, indicating their critical role in determining the intensity and formation of these features. Sensitivity tests on the Coriolis parameter (<em>f</em>) and radial decay parameter of tangential wind (<em>n</em>) show minimal impact on the development of streaks/rolls, suggesting these factors are less influential compared to wind and thermodynamic conditions.</div></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603224000468","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Turbulence within the tropical cyclone boundary layer plays a crucial role in the exchange of heat, moisture, and momentum between the surface and the atmosphere. This study investigates the characteristics of coherent structures, specifically streaks and rolls, using large eddy simulations. Our results highlight significant differences across the three radius cases, with smaller radius exhibiting more intense and organized turbulence and streak/roll structures. Our analyses reveal that thermodynamic conditions significantly impact the timing of initial streak/roll development but do not affect their intensity in the steady state. Wind structures closer to the tropical cyclone center lead to stronger and more rapidly developing streaks/rolls, indicating their critical role in determining the intensity and formation of these features. Sensitivity tests on the Coriolis parameter (f) and radial decay parameter of tangential wind (n) show minimal impact on the development of streaks/rolls, suggesting these factors are less influential compared to wind and thermodynamic conditions.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones