An α-robust and new two-grid nonuniform L2-1σ FEM for nonlinear time-fractional diffusion equation

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Zhijun Tan
{"title":"An α-robust and new two-grid nonuniform L2-1σ FEM for nonlinear time-fractional diffusion equation","authors":"Zhijun Tan","doi":"10.1016/j.camwa.2024.10.023","DOIUrl":null,"url":null,"abstract":"<div><div>This paper constructs and analyzes an <em>α</em>-robust and new two-grid finite element method (FEM) with nonuniform L2-<span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>σ</mi></mrow></msub></math></span> formula and its fast algorithms for nonlinear time-fractional diffusion equations. The method incorporates a nonuniform L2-<span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>σ</mi></mrow></msub></math></span> formula to achieve temporal second-order accuracy and address the initial solution singularity. By employing a spatial two-grid FEM, computational costs are reduced. Utilizing the cut-off technique and an auxiliary function, the condition on the nonlinear term is lessened to meet the local Lipschitz requirement. We further devise the associated fast algorithms for two-grid nonuniform L2-<span><math><msub><mrow><mn>1</mn></mrow><mrow><mi>σ</mi></mrow></msub></math></span> FEM. To prevent roundoff errors, we introduce an innovative fast algorithm to precisely calculate the kernel coefficients. An <em>α</em>-robust analysis of the stability and optimal error estimates in terms of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm for the fully discrete scheme is presented. The derived error bound remains stable as the order of the fractional derivative <span><math><mi>α</mi><mo>→</mo><msup><mrow><mn>1</mn></mrow><mrow><mo>−</mo></mrow></msup></math></span>. Furthermore, a new two-grid algorithm and its corresponding fast algorithm are proposed to decrease the computational expenses by eliminating redundancy in discrete convolutional summation. Numerical experiments support our theoretical results, confirming that two-grid FEMs offer greater efficiency in comparison to FEM.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004668","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper constructs and analyzes an α-robust and new two-grid finite element method (FEM) with nonuniform L2-1σ formula and its fast algorithms for nonlinear time-fractional diffusion equations. The method incorporates a nonuniform L2-1σ formula to achieve temporal second-order accuracy and address the initial solution singularity. By employing a spatial two-grid FEM, computational costs are reduced. Utilizing the cut-off technique and an auxiliary function, the condition on the nonlinear term is lessened to meet the local Lipschitz requirement. We further devise the associated fast algorithms for two-grid nonuniform L2-1σ FEM. To prevent roundoff errors, we introduce an innovative fast algorithm to precisely calculate the kernel coefficients. An α-robust analysis of the stability and optimal error estimates in terms of L2-norm and H1-norm for the fully discrete scheme is presented. The derived error bound remains stable as the order of the fractional derivative α1. Furthermore, a new two-grid algorithm and its corresponding fast algorithm are proposed to decrease the computational expenses by eliminating redundancy in discrete convolutional summation. Numerical experiments support our theoretical results, confirming that two-grid FEMs offer greater efficiency in comparison to FEM.
用于非线性时间分数扩散方程的α-稳健和新型双网格非均匀 L2-1σ 有限元模型
本文针对非线性时间分数扩散方程,构建并分析了一种具有非均匀 L2-1σ 公式的 α-robust 新型双网格有限元法及其快速算法。该方法采用非均匀 L2-1σ 公式,以实现时间二阶精度并解决初始解奇异性问题。通过采用空间双网格有限元,降低了计算成本。利用截断技术和辅助函数,非线性项的条件得以降低,从而满足局部 Lipschitz 的要求。我们进一步为双网格非均匀 L2-1σ 有限元设计了相关的快速算法。为了防止舍入误差,我们引入了一种创新的快速算法来精确计算核系数。以 L2 规范和 H1 规范为基础,对完全离散方案的稳定性和最优误差估计进行了 α-robust 分析。得出的误差约束随着分数导数阶数 α→1- 而保持稳定。此外,还提出了一种新的双网格算法及其相应的快速算法,通过消除离散卷积求和中的冗余来降低计算费用。数值实验支持我们的理论结果,证实双网格有限元与有限元相比具有更高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信