A pseudo-Jacobi inverse eigenvalue problem with a rank-one modification

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Wei-Ru Xu , Qian-Yu Shu , Natália Bebiano
{"title":"A pseudo-Jacobi inverse eigenvalue problem with a rank-one modification","authors":"Wei-Ru Xu ,&nbsp;Qian-Yu Shu ,&nbsp;Natália Bebiano","doi":"10.1016/j.amc.2024.129118","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi><mo>=</mo><mtext>diag</mtext><mo>(</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> be a signature matrix, where <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mo>{</mo><mo>−</mo><mn>1</mn><mo>,</mo><mo>+</mo><mn>1</mn><mo>}</mo></math></span>. Consider <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> endowed with the indefinite inner product <span><math><msub><mrow><mo>〈</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo></mrow><mrow><mi>H</mi></mrow></msub><mo>:</mo><mo>=</mo><mo>〈</mo><mi>H</mi><mi>x</mi><mo>,</mo><mi>y</mi><mo>〉</mo><mo>=</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>T</mi></mrow></msup><mi>H</mi><mi>x</mi></math></span> for all <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. A pseudo-Jacobi matrix of order <em>n</em> is a real tridiagonal symmetric matrix with respect to this indefinite inner product. In this paper, the reconstruction of a pair of <em>n</em>-by-<em>n</em> pseudo-Jacobi matrices, one obtained from the other by a rank-one modification, is investigated given their prescribed spectra. Necessary and sufficient conditions under which this problem has a solution are presented. As a special case of the obtained results, a related problem for Jacobi matrices proposed by de Boor and Golub is thoroughly solved.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":"Article 129118"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005794","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let H=diag(δ1,δ2,,δn) be a signature matrix, where δk{1,+1}. Consider Rn endowed with the indefinite inner product x,yH:=Hx,y=yTHx for all x,yRn. A pseudo-Jacobi matrix of order n is a real tridiagonal symmetric matrix with respect to this indefinite inner product. In this paper, the reconstruction of a pair of n-by-n pseudo-Jacobi matrices, one obtained from the other by a rank-one modification, is investigated given their prescribed spectra. Necessary and sufficient conditions under which this problem has a solution are presented. As a special case of the obtained results, a related problem for Jacobi matrices proposed by de Boor and Golub is thoroughly solved.
具有秩一修正的伪雅可比逆特征值问题
设 H=diag(δ1,δ2,...,δn)为签名矩阵,其中δk∈{-1,+1}。对于所有 x,y∈Rn,考虑 Rn 的不定内积 〈x,y〉H:=〈Hx,y〉=yTHx。n 阶伪雅可比矩阵是关于该不定内积的实三对角对称矩阵。本文研究了一对 n-by-n 伪雅可比矩阵的重构问题,其中一个矩阵是通过秩一修正从另一个矩阵得到的,并给出了它们的规定谱。本文提出了解决这一问题的必要条件和充分条件。作为所获结果的一个特例,de Boor 和 Golub 提出的雅可比矩阵的相关问题也得到了彻底解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信