{"title":"Linear and nonlinear filtering for a two-layer quasi-geostrophic ocean model","authors":"Lander Besabe , Michele Girfoglio , Annalisa Quaini , Gianluigi Rozza","doi":"10.1016/j.amc.2024.129121","DOIUrl":null,"url":null,"abstract":"<div><div>Although the two-layer quasi-geostrophic equations (2QGE) are a simplified model for the dynamics of a stratified, wind-driven ocean, their numerical simulation is still plagued by the need for high resolution to capture the full spectrum of turbulent scales. Since such high resolution would lead to unreasonable computational times, it is typical to resort to coarse low-resolution meshes combined with the so-called eddy viscosity parameterization to account for the diffusion mechanisms that are not captured due to mesh under-resolution. We propose to enable the use of further coarsened meshes by adding a (linear or nonlinear) differential low-pass filter to the 2QGE, without changing the eddy viscosity coefficient. While the linear filter introduces constant (additional) artificial viscosity everywhere in the domain, the nonlinear filter relies on an indicator function to determine where and how much artificial viscosity is needed. Through several numerical results for a double-gyre wind forcing benchmark, we show that with the nonlinear filter we obtain accurate results with very coarse meshes, thereby drastically reducing the computational time (speed up ranging from 30 to 300).</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":"Article 129121"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005824","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Although the two-layer quasi-geostrophic equations (2QGE) are a simplified model for the dynamics of a stratified, wind-driven ocean, their numerical simulation is still plagued by the need for high resolution to capture the full spectrum of turbulent scales. Since such high resolution would lead to unreasonable computational times, it is typical to resort to coarse low-resolution meshes combined with the so-called eddy viscosity parameterization to account for the diffusion mechanisms that are not captured due to mesh under-resolution. We propose to enable the use of further coarsened meshes by adding a (linear or nonlinear) differential low-pass filter to the 2QGE, without changing the eddy viscosity coefficient. While the linear filter introduces constant (additional) artificial viscosity everywhere in the domain, the nonlinear filter relies on an indicator function to determine where and how much artificial viscosity is needed. Through several numerical results for a double-gyre wind forcing benchmark, we show that with the nonlinear filter we obtain accurate results with very coarse meshes, thereby drastically reducing the computational time (speed up ranging from 30 to 300).
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.