Zhaoping Du, Chi Zhang, Xiaofei Yang, Hui Ye, Jianzhen Li
{"title":"Discrete-time event-triggered H-infinity stabilization for three closed-loop cyber-physical system with uncertain delay","authors":"Zhaoping Du, Chi Zhang, Xiaofei Yang, Hui Ye, Jianzhen Li","doi":"10.1016/j.amc.2024.129127","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the problems of modeling and <em>H</em>∞ control for discrete three closed-loop cyber-physical system (CPS) with network delay, disturbance, and event-triggered control for the first time. A new even-triggered scheme is designed by incorporating a disturbance term, which reduces the number of triggers compared with some previous ones due to the inclusion of disturbance, and leads to the expansion of the triggered intervals. First, a new model of the system is constructed. Then, to provide sufficient conditions of the stability for the system with <em>H</em>∞ control, Lyapunov function and linear matrix inequality (LMI) techniques are used. Furthermore, the co-design method of three controllers and event-triggered matrix is proposed. Finally, the feasibility and practicality of the method proposed in this paper are verified by a simulation example of a marine boiler power generation control system. This kind of three closed-loop CPS model is constructed for the first time, which has been applied in different control systems such as servo motors, thermal power generation, etc.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":"Article 129127"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005885","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the problems of modeling and H∞ control for discrete three closed-loop cyber-physical system (CPS) with network delay, disturbance, and event-triggered control for the first time. A new even-triggered scheme is designed by incorporating a disturbance term, which reduces the number of triggers compared with some previous ones due to the inclusion of disturbance, and leads to the expansion of the triggered intervals. First, a new model of the system is constructed. Then, to provide sufficient conditions of the stability for the system with H∞ control, Lyapunov function and linear matrix inequality (LMI) techniques are used. Furthermore, the co-design method of three controllers and event-triggered matrix is proposed. Finally, the feasibility and practicality of the method proposed in this paper are verified by a simulation example of a marine boiler power generation control system. This kind of three closed-loop CPS model is constructed for the first time, which has been applied in different control systems such as servo motors, thermal power generation, etc.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.