Blowup dynamics for smooth equivariant solutions to energy critical Landau-Lifschitz flow

IF 1.7 2区 数学 Q1 MATHEMATICS
Jitao Xu, Lifeng Zhao
{"title":"Blowup dynamics for smooth equivariant solutions to energy critical Landau-Lifschitz flow","authors":"Jitao Xu,&nbsp;Lifeng Zhao","doi":"10.1016/j.jfa.2024.110704","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the energy critical 1-equivariant Landau-Lifschitz flow mapping <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with arbitrary given coefficients <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mi>R</mi><mo>,</mo><mspace></mspace><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>. We prove that there exists a codimension one smooth well-localized set of initial data arbitrarily close to the ground state which generates type-II finite-time blowup solutions, and give a precise description of the corresponding singularity formation. In our proof, both the Schrödinger part and the heat part play important roles in the construction of approximate solutions and the mixed energy/Morawetz functional. However, the blowup rate is independent of the coefficients.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003926","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the energy critical 1-equivariant Landau-Lifschitz flow mapping R2 to S2 with arbitrary given coefficients ρ1R,ρ2>0. We prove that there exists a codimension one smooth well-localized set of initial data arbitrarily close to the ground state which generates type-II finite-time blowup solutions, and give a precise description of the corresponding singularity formation. In our proof, both the Schrödinger part and the heat part play important roles in the construction of approximate solutions and the mixed energy/Morawetz functional. However, the blowup rate is independent of the coefficients.
能量临界兰道-利夫施齐兹流平稳等变解的胀破动力学
本文研究了任意给定系数ρ1∈R,ρ2>0的能量临界一等变Landau-Lifschitz流映射R2到S2。我们证明了存在一个任意接近基态的一维光滑良好局部初始数据集,该数据集会产生 II 型有限时间炸毁解,并给出了相应奇点形成的精确描述。在我们的证明中,薛定谔部分和热量部分在近似解和混合能量/莫拉维兹函数的构造中都发挥了重要作用。然而,炸毁率与系数无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信