Changyuan Dong, Wenpeng Hong, Lei Zhang, Jingrui Lan, Yan Li, Haoran Li
{"title":"Synergetic enhancement of moisture-electric generation through interfacial evaporation and active electrode","authors":"Changyuan Dong, Wenpeng Hong, Lei Zhang, Jingrui Lan, Yan Li, Haoran Li","doi":"10.1016/j.desal.2024.118210","DOIUrl":null,"url":null,"abstract":"<div><div>Ion migration-based moisture-electric generator holds the open-circuit voltage to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges with the attainment of high-density power generation in continuous mode. Here, we introduce a sustainable and high-power density ion-selective bipolar moisture-electric generator that relies on Au-Al electrodes, capillary water supply, and interfacial evaporation. The device generates electricity by exploiting the salinity gradient between the capillary waterways in the photothermal and waste heat layers. This process is synergized by electrochemical reactions of the electrodes, which propel the migration of cations and anions through ion-selective bipolar hydrogels toward the intermediate waterway. It demonstrates a short-circuit current density of 52.2 A m<sup>−2</sup> and a power density of up to 33.8 W m<sup>−2</sup> over 0.5 cm × 0.5 cm electrodes. Connecting 13 devices in series in darkness successfully illuminates an LED lamp with a rated power of 1 W together with an operating voltage of 2.0–2.8 V. This work offers an off-grid, environmentally friendly, and affordable solution for high-density moisture power generation.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"593 ","pages":"Article 118210"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916424009214","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ion migration-based moisture-electric generator holds the open-circuit voltage to power portable electronics, the Internet of Things, and wireless transmission. However, most devices still encounter challenges with the attainment of high-density power generation in continuous mode. Here, we introduce a sustainable and high-power density ion-selective bipolar moisture-electric generator that relies on Au-Al electrodes, capillary water supply, and interfacial evaporation. The device generates electricity by exploiting the salinity gradient between the capillary waterways in the photothermal and waste heat layers. This process is synergized by electrochemical reactions of the electrodes, which propel the migration of cations and anions through ion-selective bipolar hydrogels toward the intermediate waterway. It demonstrates a short-circuit current density of 52.2 A m−2 and a power density of up to 33.8 W m−2 over 0.5 cm × 0.5 cm electrodes. Connecting 13 devices in series in darkness successfully illuminates an LED lamp with a rated power of 1 W together with an operating voltage of 2.0–2.8 V. This work offers an off-grid, environmentally friendly, and affordable solution for high-density moisture power generation.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.