Fang Tian , Shuyi Xu , Miaoyu Gan , Baihui Chen , Qian Luan , Luyun Cai
{"title":"Bionic cell wall models: Utilizing TEMPO-oxidized cellulose nanofibers for fucoxanthin delivery systems","authors":"Fang Tian , Shuyi Xu , Miaoyu Gan , Baihui Chen , Qian Luan , Luyun Cai","doi":"10.1016/j.carbpol.2024.122850","DOIUrl":null,"url":null,"abstract":"<div><div>Fucoxanthin (FX) has various excellent biological properties but suffers from poor bioavailability. In this work, we build a bionic cell wall model using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-oxidized cellulose. The bionic cell wall enhances the environmental stability of the liposomes and serves as a pH-responsive mechanism. The coating processes protect the structure of liposomes and fucoxanthin under the acidic conditions of the stomach. The bionic cell wall disperses and releases the fucoxanthin in simulated intestinal fluid (SIF). Overall, the protective and release capabilities highlight the potential of cellulose in a bionic cell wall model and provide diversity for the structural design of carriers for delivering functional bioactive components.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122850"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724010762","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Fucoxanthin (FX) has various excellent biological properties but suffers from poor bioavailability. In this work, we build a bionic cell wall model using TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-oxidized cellulose. The bionic cell wall enhances the environmental stability of the liposomes and serves as a pH-responsive mechanism. The coating processes protect the structure of liposomes and fucoxanthin under the acidic conditions of the stomach. The bionic cell wall disperses and releases the fucoxanthin in simulated intestinal fluid (SIF). Overall, the protective and release capabilities highlight the potential of cellulose in a bionic cell wall model and provide diversity for the structural design of carriers for delivering functional bioactive components.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.