Augmenting the electrochemical capability of TMDCs thin film electrodes via interface engineering for energy storage applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Zahir Iqbal , Asma Khizar , Sajid Khan , H.H. Hegazy , A.A. Alahmari
{"title":"Augmenting the electrochemical capability of TMDCs thin film electrodes via interface engineering for energy storage applications","authors":"Muhammad Zahir Iqbal ,&nbsp;Asma Khizar ,&nbsp;Sajid Khan ,&nbsp;H.H. Hegazy ,&nbsp;A.A. Alahmari","doi":"10.1016/j.mseb.2024.117757","DOIUrl":null,"url":null,"abstract":"<div><div>Low power density and low energy density associated with traditional devices, such as batteries, and supercapacitors led to the development of hybrid supercapacitors (HSCs). Researchers explore various classes of materials to cope with these limitations. Among them, transition metal dichalcogenides (TMDCs), due to their layered structure, are widely analyzed. Here the sputtering route was adopted to deposit a uniform interfacial layer of zirconium nitride (ZrN) 100 nm, which plays a crucial role in modulating the electrochemical properties of the top sputtered tungsten disulfide (WS<sub>2</sub>) layer of 250 nm. The electrochemical measurements resulted the specific capacitance of 858F/g for WS2 and 2036F/g for WS<sub>2</sub>/ZrN at scan rate of 3 mV/s. Hybrid device WS<sub>2</sub>/ZrN//AC exhibited an energy density of 76 Wh/kg, and a power density of 4325 W/kg. In addition to this, a semiempirical approach is adopted to deconvolute capacitive and diffusive contributions. This hybrid structure can improve charge storage capacity, stability, and cycle life, making it a promising material for next-generation energy storage solutions.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005865","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Low power density and low energy density associated with traditional devices, such as batteries, and supercapacitors led to the development of hybrid supercapacitors (HSCs). Researchers explore various classes of materials to cope with these limitations. Among them, transition metal dichalcogenides (TMDCs), due to their layered structure, are widely analyzed. Here the sputtering route was adopted to deposit a uniform interfacial layer of zirconium nitride (ZrN) 100 nm, which plays a crucial role in modulating the electrochemical properties of the top sputtered tungsten disulfide (WS2) layer of 250 nm. The electrochemical measurements resulted the specific capacitance of 858F/g for WS2 and 2036F/g for WS2/ZrN at scan rate of 3 mV/s. Hybrid device WS2/ZrN//AC exhibited an energy density of 76 Wh/kg, and a power density of 4325 W/kg. In addition to this, a semiempirical approach is adopted to deconvolute capacitive and diffusive contributions. This hybrid structure can improve charge storage capacity, stability, and cycle life, making it a promising material for next-generation energy storage solutions.

Abstract Image

通过界面工程增强 TMDCs 薄膜电极的电化学能力,用于储能应用
与电池和超级电容器等传统设备相关的低功率密度和低能量密度导致了混合超级电容器(HSC)的发展。研究人员探索了各类材料来应对这些限制。其中,过渡金属二卤化物(TMDCs)因其层状结构而被广泛分析。这里采用溅射方法沉积了一层 100 nm 的均匀氮化锆(ZrN)界面层,它在调节顶部溅射的 250 nm 二硫化钨(WS2)层的电化学特性方面起着至关重要的作用。电化学测量结果表明,在扫描速率为 3 mV/s 时,WS2 的比电容为 858F/g,WS2/ZrN 的比电容为 2036F/g。WS2/ZrN//AC 混合器件的能量密度为 76 Wh/kg,功率密度为 4325 W/kg。此外,还采用了一种半经验方法来消除电容性和扩散性贡献。这种混合结构可以提高电荷存储容量、稳定性和循环寿命,使其成为下一代能源存储解决方案的一种有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信