Mehmet Selim Aslan, Gönül Akça, Selda Kılıç Çetin, Ahmet Ekicibil
{"title":"Investigation of the magnetocaloric properties of Bi doping in La0.7Ca0.27Na0.03Mn1-xBixO3 (x = 0.0, 0.005, 0.01 and 0.02) perovskites","authors":"Mehmet Selim Aslan, Gönül Akça, Selda Kılıç Çetin, Ahmet Ekicibil","doi":"10.1016/j.mseb.2024.117760","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, the effects of Bi doping on the Mn-site of La<sub>0.7</sub>Ca<sub>0.27</sub>Na<sub>0.03</sub>Mn<sub>1-x</sub>Bi<sub>x</sub>O<sub>3</sub> perovskite manganites on their structural, magnetic, and magnetocaloric properties were investigated. From XRD analyses, the main La<sub>0.7</sub>Ca<sub>0.27</sub>Na<sub>0.03</sub>MnO<sub>3</sub> manganite has a rhombohedral structure with space group <span><math><mrow><mi>R</mi><mover><mrow><mn>3</mn></mrow><mrow><mo>¯</mo></mrow></mover><mi>c</mi></mrow></math></span>. In contrast, manganites obtained by doping with x = 0.005, 0.01, and 0.02 Bi were found to have an orthorhombic structure with space group <em>Pnma</em>. The Curie temperature (<em>T<sub>C</sub></em>) is 310, 246, 235, and 232 K for x = 0.0, 0.005, 0.01 and 0.02, respectively. The maximum entropy change (<span><math><mrow><mo>-</mo><mi>Δ</mi><msubsup><mi>S</mi><mrow><mi>M</mi></mrow><mrow><mi>max</mi></mrow></msubsup><mrow><mo>)</mo></mrow></mrow></math></span> values were calculated as 6.34, 8.24, 8.33, and 8.42 Jkg<sup>-1</sup>K<sup>−1</sup> for x = 0.0, 0.005, 0.01 and 0.02, respectively. The highest Relative Cooling Power (RCP) value was computed as 271 Jkg<sup>−1</sup> for the sample with a Bi concentration of 0.01. It was determined from the <em>H/M</em> versus <em>M<sup>2</sup></em> curves that all samples displayed a second-order magnetic phase transition.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117760"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005890","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, the effects of Bi doping on the Mn-site of La0.7Ca0.27Na0.03Mn1-xBixO3 perovskite manganites on their structural, magnetic, and magnetocaloric properties were investigated. From XRD analyses, the main La0.7Ca0.27Na0.03MnO3 manganite has a rhombohedral structure with space group . In contrast, manganites obtained by doping with x = 0.005, 0.01, and 0.02 Bi were found to have an orthorhombic structure with space group Pnma. The Curie temperature (TC) is 310, 246, 235, and 232 K for x = 0.0, 0.005, 0.01 and 0.02, respectively. The maximum entropy change ( values were calculated as 6.34, 8.24, 8.33, and 8.42 Jkg-1K−1 for x = 0.0, 0.005, 0.01 and 0.02, respectively. The highest Relative Cooling Power (RCP) value was computed as 271 Jkg−1 for the sample with a Bi concentration of 0.01. It was determined from the H/M versus M2 curves that all samples displayed a second-order magnetic phase transition.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.