{"title":"A local projection stabilised HHO method for the Oseen problem","authors":"Gouranga Mallik , Rahul Biswas , Thirupathi Gudi","doi":"10.1016/j.camwa.2024.10.030","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004735","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we consider a local projection stabilisation for a Hybrid High-Order (HHO) approximation of the Oseen problem. We prove an existence-uniqueness result under a stronger SUPG-like norm. We improve the stability and provide error estimation in stronger norm for convection dominated Oseen problem. We also derive an optimal order error estimate under the SUPG-like norm for equal-order polynomial discretisation of velocity and pressure spaces. Numerical experiments are performed to validate the theoretical results.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).