A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jun Zhang , Zijiang Luo , Jiayu Han , Hu Chen
{"title":"A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem","authors":"Jun Zhang ,&nbsp;Zijiang Luo ,&nbsp;Jiayu Han ,&nbsp;Hu Chen","doi":"10.1016/j.camwa.2024.10.026","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is devoted to a-priori and a-posteriori error analysis of discontinuous Galerkin (DG) method for the Maxwell eigenvalue problem. The discrete compactness of DG space is proved so that the Babuška and Osborn spectral approximation theory can be applicable in the a-priori error analysis. Then we prove the optimal error estimates for DG eigenfunctions in mesh-dependent norm and DG eigenvalues. A special contribution of this work is to prove that the error in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm for smooth eigenfunctions is of higher order than that in mesh-dependent norm, so that the DG eigenvalues can approximate the true eigenvalues from upper. Another contribution of this work is to provide a-posteriori error analysis for the DG method. A reliable a-posteriori error estimator is analyzed. The upper bound property of DG eigenvalues and the robustness of adaptive methods are verified through numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"176 ","pages":"Pages 190-201"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to a-priori and a-posteriori error analysis of discontinuous Galerkin (DG) method for the Maxwell eigenvalue problem. The discrete compactness of DG space is proved so that the Babuška and Osborn spectral approximation theory can be applicable in the a-priori error analysis. Then we prove the optimal error estimates for DG eigenfunctions in mesh-dependent norm and DG eigenvalues. A special contribution of this work is to prove that the error in L2-norm for smooth eigenfunctions is of higher order than that in mesh-dependent norm, so that the DG eigenvalues can approximate the true eigenvalues from upper. Another contribution of this work is to provide a-posteriori error analysis for the DG method. A reliable a-posteriori error estimator is analyzed. The upper bound property of DG eigenvalues and the robustness of adaptive methods are verified through numerical experiments.
麦克斯韦特征值问题非连续伽勒金方法的先验和后验误差估计
本文致力于麦克斯韦特征值问题的非连续伽勒金(DG)方法的先验和后验误差分析。本文证明了 DG 空间的离散紧凑性,因此 Babuška 和 Osborn 光谱近似理论可用于先验误差分析。然后,我们证明了网格相关规范中 DG 特征函数和 DG 特征值的最优误差估计。这项工作的一个特殊贡献是证明了光滑特征函数的 L2 准则误差比网格相关准则误差的阶数更高,因此 DG 特征值可以从上逼近真实特征值。这项工作的另一个贡献是提供了 DG 方法的后验误差分析。分析了一个可靠的后验误差估计器。通过数值实验验证了 DG 特征值的上界特性和自适应方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信