Wei Zhang , Chuanniu Yuan , Weijian Xiao , Xu Gong , Bozhan Hai , Rongxin Chen , Jian Zhou
{"title":"MPFEM investigation on densification and mechanical structures during ferrous powder compaction","authors":"Wei Zhang , Chuanniu Yuan , Weijian Xiao , Xu Gong , Bozhan Hai , Rongxin Chen , Jian Zhou","doi":"10.1016/j.apt.2024.104700","DOIUrl":null,"url":null,"abstract":"<div><div>Metal powder compaction is a crucial process in powder metallurgy, significantly affecting the final properties of compacts. However, the quantitative characteristics of multi-scale mechanical structures and the microscopic densification behavior, taking into account the influence of friction conditions, remain unclear. This study utilises a two-dimensional multi-particle finite element method to analyse the ferrous powder compaction. The evolution of powder densification, powder deformation and multi-scale mechanical behaviour under different friction coefficient conditions are analyzed quantitatively and qualitatively. Results reveal that powder densification occurs in distinct stages, with lower friction coefficients promoting greater powder densification, as observed from relative density and coordination number. Additionally, as the axial strain increases, plastic strain gradually rises whilst roundness decreases. Higher friction coefficients are associated with higher equivalent plastic strain but lower powder roundness. The Von Mises stress exhibits different stages of increase with the increment of axial strain. Powders with lower friction coefficients exhibit lower levels of Von Mises stress. As axial strain increases, the number, length, strength and direction coefficient of force chains undergo different evolution processes. Force chains exhibit longer length, fewer numbers, lower strength and lower direction coefficients at lower friction coefficients.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":"35 12","pages":"Article 104700"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003765","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metal powder compaction is a crucial process in powder metallurgy, significantly affecting the final properties of compacts. However, the quantitative characteristics of multi-scale mechanical structures and the microscopic densification behavior, taking into account the influence of friction conditions, remain unclear. This study utilises a two-dimensional multi-particle finite element method to analyse the ferrous powder compaction. The evolution of powder densification, powder deformation and multi-scale mechanical behaviour under different friction coefficient conditions are analyzed quantitatively and qualitatively. Results reveal that powder densification occurs in distinct stages, with lower friction coefficients promoting greater powder densification, as observed from relative density and coordination number. Additionally, as the axial strain increases, plastic strain gradually rises whilst roundness decreases. Higher friction coefficients are associated with higher equivalent plastic strain but lower powder roundness. The Von Mises stress exhibits different stages of increase with the increment of axial strain. Powders with lower friction coefficients exhibit lower levels of Von Mises stress. As axial strain increases, the number, length, strength and direction coefficient of force chains undergo different evolution processes. Force chains exhibit longer length, fewer numbers, lower strength and lower direction coefficients at lower friction coefficients.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)