{"title":"A highly permeable nanoplatform based on functionalized carbon dots for synergistic reactive oxygen/nitrogen species tumor therapy","authors":"Jiangyong Li, Qin Li, Qian Yang, Qi Tang, Xiaoyi Hu, Qing Liu, Liangke Zhang","doi":"10.1016/j.mtnano.2024.100532","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS)-based antitumor strategies, particularly chemodynamic therapy, have garnered considerable attention. However, challenges such as difficulties in achieving deep penetration, relatively low H<sub>2</sub>O<sub>2</sub> levels in the tumor microenvironment, the requirement for low pH by the Fenton reaction, and their short lifespan have impeded satisfactory therapeutic outcomes. Hence, we have developed a nanoplatform with enhanced permeability that not only generates significant amounts of ROS but also converts them into longer-lasting reactive nitrogen species (RNS), thereby improving tumor therapy efficacy. In our study, carbon dots were functionalized by doping with gold atoms and grafting nitrosoglutathione (GSNO) to form ACN, which exhibits glucose oxidase-like properties and enables laser-responsive NO release. ACN and indocyanine green (ICG) were then loaded onto MnO<sub>2</sub> nanoflowers to form MnO<sub>2</sub>@AI. Upon arrival at the tumor site, MnO<sub>2</sub> reacts with H<sub>2</sub>O<sub>2</sub> and GSH, leading to its degradation and the subsequent release of ACN, which is characterized by three permeation-promoting properties: ultra-small size, positive charge, and NO content. In addition, ACN promotes H<sub>2</sub>O<sub>2</sub> production through glucose metabolism and reduces pH, both of which enhance the Fenton-like reaction of MnO<sub>2</sub>, thereby amplifying ROS generation. The ICG in MnO<sub>2</sub>@AI enhances its photothermal properties, leading to the responsive release of NO from GSNO grafted onto ACN, which then reacts with the increased ROS to generate more toxic RNS. Collectively, the approach described herein offers substantial potential for advancing the treatment of malignant tumors.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100532"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000828","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS)-based antitumor strategies, particularly chemodynamic therapy, have garnered considerable attention. However, challenges such as difficulties in achieving deep penetration, relatively low H2O2 levels in the tumor microenvironment, the requirement for low pH by the Fenton reaction, and their short lifespan have impeded satisfactory therapeutic outcomes. Hence, we have developed a nanoplatform with enhanced permeability that not only generates significant amounts of ROS but also converts them into longer-lasting reactive nitrogen species (RNS), thereby improving tumor therapy efficacy. In our study, carbon dots were functionalized by doping with gold atoms and grafting nitrosoglutathione (GSNO) to form ACN, which exhibits glucose oxidase-like properties and enables laser-responsive NO release. ACN and indocyanine green (ICG) were then loaded onto MnO2 nanoflowers to form MnO2@AI. Upon arrival at the tumor site, MnO2 reacts with H2O2 and GSH, leading to its degradation and the subsequent release of ACN, which is characterized by three permeation-promoting properties: ultra-small size, positive charge, and NO content. In addition, ACN promotes H2O2 production through glucose metabolism and reduces pH, both of which enhance the Fenton-like reaction of MnO2, thereby amplifying ROS generation. The ICG in MnO2@AI enhances its photothermal properties, leading to the responsive release of NO from GSNO grafted onto ACN, which then reacts with the increased ROS to generate more toxic RNS. Collectively, the approach described herein offers substantial potential for advancing the treatment of malignant tumors.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites