Huasu Wang, Jing Bi, Yu Zhao, Chaolin Wang, Jiabao Ma
{"title":"NMR-based analysis of the effect of moisture migration on sandstone pore structure under alternating wetting and drying conditions","authors":"Huasu Wang, Jing Bi, Yu Zhao, Chaolin Wang, Jiabao Ma","doi":"10.1016/j.ijmst.2024.07.014","DOIUrl":null,"url":null,"abstract":"<div><div>The wetting-drying (W-D) cycle is a type of water–rock interaction. The pore structure of rock, such as shape, size, distribution and pore throat, affects fluid storage and transport. Fractal theory and experimental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage. The mass and velocity of liquid migration are related to the pore size, porosity, fluid properties, etc. Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles. At the same test time, the mass and velocity of the SI water absorption method are smaller than those of the FI method. Under these two conditions, the amount and rate of water absorption represent the degree of water–rock interaction. Considering the pore evolution during the wet-dry cycling, an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model. The experimental data are in excellent agreement with the calculated values of the model. Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks. Based on the interaction between permeability and pores, quantitative analysis of the weakening process (local damage) of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 8","pages":"Pages 1135-1150"},"PeriodicalIF":11.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001095","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
The wetting-drying (W-D) cycle is a type of water–rock interaction. The pore structure of rock, such as shape, size, distribution and pore throat, affects fluid storage and transport. Fractal theory and experimental research on the evolution characteristics of pore damage during the wet-dry erosion process are highly important for determining W-D damage. The mass and velocity of liquid migration are related to the pore size, porosity, fluid properties, etc. Experimental data show that the water absorption quality and velocity in rocks decrease with the number of wet-dry cycles. At the same test time, the mass and velocity of the SI water absorption method are smaller than those of the FI method. Under these two conditions, the amount and rate of water absorption represent the degree of water–rock interaction. Considering the pore evolution during the wet-dry cycling, an equation describing the motion of liquid in porous media was derived based on the imbibition-type separation model. The experimental data are in excellent agreement with the calculated values of the model. Permeability characteristics can affect the area and degree of rock deterioration as well as the development rate of pores and microcracks. Based on the interaction between permeability and pores, quantitative analysis of the weakening process (local damage) of rocks under W-D cycles can provide good reference indicators for evaluating the stability of geotechnical engineering.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.