Xinrong Liu , Peiyao Li , Xueyan Guo , Xinyang Luo , Xiaohan Zhou , Luli Miao , Fuchuan Zhou , Hao Wang
{"title":"A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode","authors":"Xinrong Liu , Peiyao Li , Xueyan Guo , Xinyang Luo , Xiaohan Zhou , Luli Miao , Fuchuan Zhou , Hao Wang","doi":"10.1016/j.ijmst.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><div>Some rock joints exhibit significant brittleness, characterized by a sharp decrease in shear stress upon reaching the peak strength. However, existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance. This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics, containing only three model parameters. The proposed model encompasses all stages of joint shearing, including the compaction stage, linear stage, plastic yielding stage, drop stage, strain softening stage, and residual strength stage. To derive the analytical expression of the constitutive model, three boundary conditions are introduced. Experimental data from both natural and artificial rock joints is utilized to validate the model, resulting in average absolute relative errors ranging from 3% to 8%. Moreover, a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively, with model parameters possessing clearer mechanical interpretations. Furthermore, parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints. Importantly, the proposed model is straightforward in form, and all model parameters can be obtained from direct shear tests, thus facilitating the utilization in numerical simulations.</div></div>","PeriodicalId":48625,"journal":{"name":"International Journal of Mining Science and Technology","volume":"34 8","pages":"Pages 1041-1058"},"PeriodicalIF":11.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095268624001228","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
Some rock joints exhibit significant brittleness, characterized by a sharp decrease in shear stress upon reaching the peak strength. However, existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance. This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics, containing only three model parameters. The proposed model encompasses all stages of joint shearing, including the compaction stage, linear stage, plastic yielding stage, drop stage, strain softening stage, and residual strength stage. To derive the analytical expression of the constitutive model, three boundary conditions are introduced. Experimental data from both natural and artificial rock joints is utilized to validate the model, resulting in average absolute relative errors ranging from 3% to 8%. Moreover, a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively, with model parameters possessing clearer mechanical interpretations. Furthermore, parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints. Importantly, the proposed model is straightforward in form, and all model parameters can be obtained from direct shear tests, thus facilitating the utilization in numerical simulations.
期刊介绍:
The International Journal of Mining Science and Technology, founded in 1990 as the Journal of China University of Mining and Technology, is a monthly English-language journal. It publishes original research papers and high-quality reviews that explore the latest advancements in theories, methodologies, and applications within the realm of mining sciences and technologies. The journal serves as an international exchange forum for readers and authors worldwide involved in mining sciences and technologies. All papers undergo a peer-review process and meticulous editing by specialists and authorities, with the entire submission-to-publication process conducted electronically.