Symmetry-breaking bifurcation analysis of a free boundary problem modeling 3-dimensional tumor cord growth

IF 2.4 2区 数学 Q1 MATHEMATICS
Junying Chen, Ruixiang Xing
{"title":"Symmetry-breaking bifurcation analysis of a free boundary problem modeling 3-dimensional tumor cord growth","authors":"Junying Chen,&nbsp;Ruixiang Xing","doi":"10.1016/j.jde.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study a free boundary problem modeling the growth of 3-dimensional tumor cords. Since tumor cells grow freely in both the longitudinal and cross-sectional directions of blood vessels, the investigation of symmetry-breaking phenomena in both directions is biologically very reasonable. This forces the possible bifurcation value <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> to be dependent on two variables <em>m</em> and <em>n</em>. Some monotonicity properties of the possible bifurcation value <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> or <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> obtained in Friedman and Hu (2008) <span><span>[1]</span></span> and He and Xing (2023) <span><span>[2]</span></span> no longer hold here, which brings a great challenge to the bifurcation analysis. The novelty of this paper lies in determining the order of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> for <span><math><msqrt><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt></math></span>. Together with periodicity and symmetry, we propose an effective method to avoid the need for the monotonicity of <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span>. We give symmetry-breaking bifurcation results for every <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"415 ","pages":"Pages 829-854"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006752","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a free boundary problem modeling the growth of 3-dimensional tumor cords. Since tumor cells grow freely in both the longitudinal and cross-sectional directions of blood vessels, the investigation of symmetry-breaking phenomena in both directions is biologically very reasonable. This forces the possible bifurcation value γm,n to be dependent on two variables m and n. Some monotonicity properties of the possible bifurcation value μn or μj obtained in Friedman and Hu (2008) [1] and He and Xing (2023) [2] no longer hold here, which brings a great challenge to the bifurcation analysis. The novelty of this paper lies in determining the order of γm,n for m2+n2. Together with periodicity and symmetry, we propose an effective method to avoid the need for the monotonicity of γm,n. We give symmetry-breaking bifurcation results for every γm,n>0.
模拟三维肿瘤脐带生长的自由边界问题的对称破缺分岔分析
本文研究了模拟三维肿瘤索生长的自由边界问题。由于肿瘤细胞可在血管的纵向和横向自由生长,因此研究两个方向的对称性破坏现象在生物学上是非常合理的。Friedman 和 Hu (2008) [1]以及 He 和 Xing (2023) [2]中得到的可能分叉值 μn 或 μj 的一些单调性在这里不再成立,这给分叉分析带来了巨大挑战。本文的新颖之处在于确定了 m2+n2 的 γm,n 阶数。结合周期性和对称性,我们提出了一种有效的方法来避免γm,n 的单调性。我们给出了每个 γm,n>0 的对称性破缺分岔结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信