{"title":"Local rigidity of constant mean curvature hypersurfaces in space forms","authors":"Yayun Chen , Tongzhu Li","doi":"10.1016/j.jmaa.2024.128974","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the local rigidity of constant mean curvature (CMC) hypersurfaces. Let <span><math><mi>x</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, be a piece of immersed constant mean curvature hypersurface in the <span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-dimensional space form <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span>. We prove that if the scalar curvature <em>R</em> is constant and the number <em>g</em> of the distinct principal curvatures satisfies <span><math><mi>g</mi><mo>≤</mo><mn>3</mn></math></span>, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is an isoparametric hypersurface. Further, if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a minimal hypersurface, then <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is a totally geodesic hypersurface for <span><math><mi>c</mi><mo>≤</mo><mn>0</mn></math></span>, and <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is either a Cartan minimal hypersurface, a Clifford minimal hypersurface, or a totally geodesic hypersurface for <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span>, which solves the high dimensional version of Bryant Conjecture.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128974"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008965","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the local rigidity of constant mean curvature (CMC) hypersurfaces. Let , be a piece of immersed constant mean curvature hypersurface in the -dimensional space form . We prove that if the scalar curvature R is constant and the number g of the distinct principal curvatures satisfies , then is an isoparametric hypersurface. Further, if is a minimal hypersurface, then is a totally geodesic hypersurface for , and is either a Cartan minimal hypersurface, a Clifford minimal hypersurface, or a totally geodesic hypersurface for , which solves the high dimensional version of Bryant Conjecture.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.