Predicting coastal wave conditions: A simple machine learning approach

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Edward Roome, David Christie, Simon Neill
{"title":"Predicting coastal wave conditions: A simple machine learning approach","authors":"Edward Roome,&nbsp;David Christie,&nbsp;Simon Neill","doi":"10.1016/j.apor.2024.104282","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and reliable nearshore wave predictions are highly valuable for a range of marine activities, including coastal engineering and maritime transport. However, in nearshore locations, predicting wave properties is challenging due to complex shallow water processes, requiring local wave models. This article develops an alternative data-driven framework to predict wave parameters (e.g. significant wave height) through the extension of wave buoy datasets using a trained Gaussian process regression (GPR — a supervised machine learning method). We present an easy-to-implement workflow, where the extensive range of input parameters (from ECMWF’s (1) ERA5 reanalysis and (2) IFS forecast global wave model, <span><math><mrow><mo>≈</mo><mn>50</mn><mspace></mspace><mi>km</mi></mrow></math></span> resolution) drives the development of GPR models. At five contrasting locations around the United Kingdom’s coastline, the GPR models produce wave predictions (forecast and hindcast) with low bias scores and strong correlations with observations. When compared to the <em>global</em> (ERA5 reanalysis) and a benchmark <em>shelf-scale</em> (Atlantic-European North West Shelf reanalysis; AENWS, <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mo>−</mo><mn>3</mn><mo>.</mo><mn>0</mn><mspace></mspace><mi>km</mi></mrow></math></span> resolution) model, the GPR hindcasts reduced significant wave height (<span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) root-mean-squared error (RMSE) from 0.46 m (ERA5) and 0.21 m (AENWS) to 0.16 m (GPR). For the average zero-crossing wave period (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span>) RMSE reduced from 1.46 s (ERA5) and 1.15 s (AENWS) to 0.58 s (GPR). Because our approach uses publicly available global data, it can be implemented at any historic or active buoy location. We provide proof of concept for an online forecast and hindcast tool which has the potential to improve accessibility to coastal wave predictions for many marine stakeholders.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"153 ","pages":"Article 104282"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004036","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and reliable nearshore wave predictions are highly valuable for a range of marine activities, including coastal engineering and maritime transport. However, in nearshore locations, predicting wave properties is challenging due to complex shallow water processes, requiring local wave models. This article develops an alternative data-driven framework to predict wave parameters (e.g. significant wave height) through the extension of wave buoy datasets using a trained Gaussian process regression (GPR — a supervised machine learning method). We present an easy-to-implement workflow, where the extensive range of input parameters (from ECMWF’s (1) ERA5 reanalysis and (2) IFS forecast global wave model, 50km resolution) drives the development of GPR models. At five contrasting locations around the United Kingdom’s coastline, the GPR models produce wave predictions (forecast and hindcast) with low bias scores and strong correlations with observations. When compared to the global (ERA5 reanalysis) and a benchmark shelf-scale (Atlantic-European North West Shelf reanalysis; AENWS, 1.53.0km resolution) model, the GPR hindcasts reduced significant wave height (Hs) root-mean-squared error (RMSE) from 0.46 m (ERA5) and 0.21 m (AENWS) to 0.16 m (GPR). For the average zero-crossing wave period (Tz) RMSE reduced from 1.46 s (ERA5) and 1.15 s (AENWS) to 0.58 s (GPR). Because our approach uses publicly available global data, it can be implemented at any historic or active buoy location. We provide proof of concept for an online forecast and hindcast tool which has the potential to improve accessibility to coastal wave predictions for many marine stakeholders.
预测海岸波浪状况:简单的机器学习方法
准确可靠的近岸波浪预测对包括海岸工程和海上运输在内的一系列海洋活动具有很高的价值。然而,在近岸地点,由于复杂的浅水过程,预测波浪特性具有挑战性,需要本地波浪模型。本文通过使用训练有素的高斯过程回归(GPR--一种有监督的机器学习方法)扩展波浪浮标数据集,开发了另一种数据驱动框架来预测波浪参数(如显著波高)。我们介绍了一个易于实施的工作流程,其中广泛的输入参数(来自 ECMWF 的 (1) ERA5 再分析和 (2) IFS 全球波浪预测模型,分辨率≈50km)推动了 GPR 模型的发展。在英国海岸线的五个不同地点,GPR 模型产生的波浪预测结果(预报和后报)偏差小,与观测结果的相关性强。与全球(ERA5 再分析)和基准陆架尺度(大西洋-欧洲西北陆架再分析;AENWS,1.5-3.0 千米分辨率)模型相比,GPR 后报将显著波高(Hs)均方根误差(RMSE)从 0.46 米(ERA5)和 0.21 米(AENWS)降低到 0.16 米(GPR)。平均过零波周期(Tz)的均方根误差从 1.46 秒(ERA5)和 1.15 秒(AENWS)减小到 0.58 秒(GPR)。由于我们的方法使用的是公开的全球数据,因此可以在任何历史或活动浮标位置实施。我们为在线预报和后报工具提供了概念验证,它有可能使许多海洋利益相关者更容易获得沿岸波浪预报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信