A theoretical exploration of the electronic structure and single photoionization of the many-electron system confined in Gaussian potential

IF 2.3 3区 物理与天体物理 Q2 OPTICS
Zhan-Bin Chen
{"title":"A theoretical exploration of the electronic structure and single photoionization of the many-electron system confined in Gaussian potential","authors":"Zhan-Bin Chen","doi":"10.1016/j.jqsrt.2024.109228","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript investigates the electronic structures, spectral properties, and photoionization processes of the confined atomic system. For this purpose, a relativistic methodology employing the Dirac–Coulomb Hamiltonian within the context of relativistic configuration interaction is suggested, utilizing independent particle basis wavefunctions. The key idea of this approach is to place the atom inside a Gaussian potential, which gives a realistic description of the spatial confinement in quantum dots due to a smooth change at the quantum dot boundaries and has a finite range and depth for the spatial confinement. As a result, the local central potential is modified, which is determined by a self-consistent process. The solutions to the Dirac equation, incorporating the aforementioned central potential, yield both the continuous and bound state wave functions. The photoionization process is determined through the application of the distorted wave approach within the context of relativistic Dirac theory. As an application, the electronic structures of the confined Li atom, including energies, ionization potentials, transition rates, and photoionization dynamical properties such as wave functions, cross sections, and photoelectron angular distributions, are systematically investigated within the dipole approximation for a wide range of potential depths and confining radii. A systematic comparison of the present outcomes is made with other available results. The present study is not only meaningful for fundamental research in atomic and molecular physics, but also has implications for a range of disciplines, such as nanochemistry, materials science, and other related fields.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109228"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003352","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript investigates the electronic structures, spectral properties, and photoionization processes of the confined atomic system. For this purpose, a relativistic methodology employing the Dirac–Coulomb Hamiltonian within the context of relativistic configuration interaction is suggested, utilizing independent particle basis wavefunctions. The key idea of this approach is to place the atom inside a Gaussian potential, which gives a realistic description of the spatial confinement in quantum dots due to a smooth change at the quantum dot boundaries and has a finite range and depth for the spatial confinement. As a result, the local central potential is modified, which is determined by a self-consistent process. The solutions to the Dirac equation, incorporating the aforementioned central potential, yield both the continuous and bound state wave functions. The photoionization process is determined through the application of the distorted wave approach within the context of relativistic Dirac theory. As an application, the electronic structures of the confined Li atom, including energies, ionization potentials, transition rates, and photoionization dynamical properties such as wave functions, cross sections, and photoelectron angular distributions, are systematically investigated within the dipole approximation for a wide range of potential depths and confining radii. A systematic comparison of the present outcomes is made with other available results. The present study is not only meaningful for fundamental research in atomic and molecular physics, but also has implications for a range of disciplines, such as nanochemistry, materials science, and other related fields.
约束在高斯势中的多电子系统的电子结构和单一光离子化的理论探索
本手稿研究了约束原子系统的电子结构、光谱特性和光离子化过程。为此,我们提出了一种相对论方法,利用独立粒子基波函数,在相对论构型相互作用的背景下采用狄拉克-库仑哈密顿。这种方法的关键思路是将原子置于高斯势中,高斯势能真实地描述了量子点中由于量子点边界的平滑变化而产生的空间束缚,并且空间束缚的范围和深度都是有限的。因此,局部中心势被修改,由一个自洽过程决定。包含上述中心势的狄拉克方程的解产生了连续态和束缚态波函数。光离子化过程是通过应用相对论狄拉克理论中的扭曲波方法确定的。作为一种应用,在偶极近似中系统地研究了约束锂原子的电子结构,包括能量、电离势、转变率和光电离动力学特性,如波函数、截面和光电子角分布,适用于广泛的势深和约束半径范围。本研究结果与其他现有结果进行了系统比较。本研究不仅对原子和分子物理学的基础研究有意义,而且对一系列学科,如纳米化学、材料科学和其他相关领域也有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信