Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED
Zuo-Shu Sun , Xue-Yan Xiang , Qiu-Ping Zhao , Zhao Tang , Shi-Yi Jiang , Tong-Bu Lu , Zhi-Ming Zhang , Baifan Wang , Hua-Qing Yin
{"title":"Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon","authors":"Zuo-Shu Sun ,&nbsp;Xue-Yan Xiang ,&nbsp;Qiu-Ping Zhao ,&nbsp;Zhao Tang ,&nbsp;Shi-Yi Jiang ,&nbsp;Tong-Bu Lu ,&nbsp;Zhi-Ming Zhang ,&nbsp;Baifan Wang ,&nbsp;Hua-Qing Yin","doi":"10.1016/S1872-2067(24)60111-7","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic urea synthesis provides a favorable strategy for conventional energy-consuming urea synthesis, but achieving large-scale catalyst synthesis with high catalytic efficiency remains challenging. Herein, we developed a simple method for the preparation of a series of FeNi-alloy-based catalysts, named FeNi@<em>n</em>C-<em>T</em> (<em>n</em> represents the content of nanoporous carbon as 1, 3, 5, 7 or 9 g and <em>T</em> = 900, 950, 1000 or 1100 °C), for highly performed urea synthesis <em>via</em> NO<sub>3</sub><sup>−</sup> and CO<sub>2</sub> co-reduction. The FeNi@7C-1000 achieved a high urea yield of 1041.33 mmol h<sup>−1</sup> g<sub>FeNi</sub><sup>−1</sup> with a Faradaic efficiency of 15.56% at –1.2 V <em>vs</em>. RHE. Moreover, the scale-up synthesized FeNi@7C-950-S (over 140 g per batch) was achieved with its high catalytic performance and high stability maintained. Mechanism investigation illuminated that the Ni and Fe sites catalyze and stabilize the key *CO and *N intermediates and minimize the C–N coupling reaction barriers for highly efficient urea synthesis.</div></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"65 ","pages":"Pages 153-162"},"PeriodicalIF":15.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601117","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic urea synthesis provides a favorable strategy for conventional energy-consuming urea synthesis, but achieving large-scale catalyst synthesis with high catalytic efficiency remains challenging. Herein, we developed a simple method for the preparation of a series of FeNi-alloy-based catalysts, named FeNi@nC-T (n represents the content of nanoporous carbon as 1, 3, 5, 7 or 9 g and T = 900, 950, 1000 or 1100 °C), for highly performed urea synthesis via NO3 and CO2 co-reduction. The FeNi@7C-1000 achieved a high urea yield of 1041.33 mmol h−1 gFeNi−1 with a Faradaic efficiency of 15.56% at –1.2 V vs. RHE. Moreover, the scale-up synthesized FeNi@7C-950-S (over 140 g per batch) was achieved with its high catalytic performance and high stability maintained. Mechanism investigation illuminated that the Ni and Fe sites catalyze and stabilize the key *CO and *N intermediates and minimize the C–N coupling reaction barriers for highly efficient urea synthesis.
在规模化生产的铁镍合金装饰纳米多孔碳上高效电催化二氧化碳和硝酸盐合成尿素
电催化尿素合成为传统耗能的尿素合成提供了一种有利的策略,但实现大规模、高催化效率的催化剂合成仍具有挑战性。在此,我们开发了一种简单的方法来制备一系列基于铁镍合金的催化剂,命名为 FeNi@nC-T(n 表示纳米多孔碳的含量为 1、3、5、7 或 9 克,T = 900、950、1000 或 1100 °C),用于通过 NO3- 和 CO2 协同还原来高效合成尿素。FeNi@7C-1000 的尿素产量高达 1041.33 mmol h-1 gFeNi-1,在 -1.2 V 对 RHE 条件下的法拉第效率为 15.56%。此外,放大合成的 FeNi@7C-950-S(每批超过 140 克)保持了高催化性能和高稳定性。机理研究表明,Ni 和 Fe 位点催化并稳定了关键的 *CO 和 *N 中间体,并最大程度地降低了 C-N 偶联反应障碍,从而实现了高效尿素合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信