Cochlear implant/MXene-based electroacoustic stimulation modulates the growth and maturation of spiral ganglion neurons

Q1 Medicine
Yangnan Hu , Hao Wei , Menghui Liao , Shanying Han , Xin Gao , Yusong Wang , Shan Zhou , Dongyu Xu , Xugang Zhuang , Ye Yang , Hong Cheng , Bin Zhang , Qingyue Cui , Jieyu Qi , Lei Tian , Wenyan Li , Xia Gao , Renjie Chai
{"title":"Cochlear implant/MXene-based electroacoustic stimulation modulates the growth and maturation of spiral ganglion neurons","authors":"Yangnan Hu ,&nbsp;Hao Wei ,&nbsp;Menghui Liao ,&nbsp;Shanying Han ,&nbsp;Xin Gao ,&nbsp;Yusong Wang ,&nbsp;Shan Zhou ,&nbsp;Dongyu Xu ,&nbsp;Xugang Zhuang ,&nbsp;Ye Yang ,&nbsp;Hong Cheng ,&nbsp;Bin Zhang ,&nbsp;Qingyue Cui ,&nbsp;Jieyu Qi ,&nbsp;Lei Tian ,&nbsp;Wenyan Li ,&nbsp;Xia Gao ,&nbsp;Renjie Chai","doi":"10.1016/j.engreg.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Cochlear implantation (CI) offers a dependable treatment for sensorineural hearing loss, with precision electroacoustic stimulation parameters showing great potential in improving auditory outcomes in CI patients. Here, we report the attachment of MXene into CI systems which effectively mimic the neural electrode interface due to MXene's excellent electrical conductivity and biocompatibility. Low-frequency short-term biphasic electrical pulses emitted by the MXenes-based CI promoted the outgrowth of spiral ganglion neuron (SGN) neurites and growth cones, substantially boosting the calcium activity in SGNs. This study lays a theoretical foundation for the precision medicine approaches in CI patient care, and informs the selection of materials for cochlear implant electrode materials in the future.</div></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"5 4","pages":"Pages 443-451"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138124000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cochlear implantation (CI) offers a dependable treatment for sensorineural hearing loss, with precision electroacoustic stimulation parameters showing great potential in improving auditory outcomes in CI patients. Here, we report the attachment of MXene into CI systems which effectively mimic the neural electrode interface due to MXene's excellent electrical conductivity and biocompatibility. Low-frequency short-term biphasic electrical pulses emitted by the MXenes-based CI promoted the outgrowth of spiral ganglion neuron (SGN) neurites and growth cones, substantially boosting the calcium activity in SGNs. This study lays a theoretical foundation for the precision medicine approaches in CI patient care, and informs the selection of materials for cochlear implant electrode materials in the future.

Abstract Image

基于人工耳蜗/MXene的电声刺激可调节螺旋神经节神经元的生长和成熟
人工耳蜗植入术(CI)是治疗感音神经性听力损失的可靠方法,精确的电声刺激参数在改善 CI 患者的听觉效果方面显示出巨大的潜力。在此,我们报告了将 MXene 植入 CI 系统的情况,由于 MXene 具有出色的导电性和生物相容性,它能有效模拟神经电极接口。基于 MXene 的 CI 发出的低频短期双相电脉冲促进了螺旋神经节神经元(SGN)神经元和生长锥的生长,大大提高了 SGN 的钙活性。这项研究为人工耳蜗患者护理中的精准医疗方法奠定了理论基础,并为今后人工耳蜗电极材料的选择提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineered regeneration
Engineered regeneration Biomaterials, Medicine and Dentistry (General), Biotechnology, Biomedical Engineering
CiteScore
22.90
自引率
0.00%
发文量
0
审稿时长
33 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信