Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators

IF 1.2 3区 数学 Q1 MATHEMATICS
Jun Cao , Mengyao Gao , Yongyang Jin , Chao Wang
{"title":"Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators","authors":"Jun Cao ,&nbsp;Mengyao Gao ,&nbsp;Yongyang Jin ,&nbsp;Chao Wang","doi":"10.1016/j.jmaa.2024.128975","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>m</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><mi>H</mi><mo>=</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><mi>V</mi></math></span> be a higher order Schrödinger operators in the Euclidean space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>V</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>. In this paper, the authors characterize the infinitesimal relative boundedness and Trudinger's subordination for <em>H</em> on <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span> with <span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>, via the limit behavior of the family of operators <span><math><msub><mrow><mo>{</mo><mi>V</mi><msup><mrow><mo>(</mo><msup><mrow><mi>λ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mo>−</mo><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>}</mo></mrow><mrow><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo></mrow></msub></math></span> and a generalized Kato-type class condition. The latter is weaker than the classical Kato class condition corresponding to the case <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span>. All these characterizations are new even when <span><math><mi>H</mi><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>V</mi></math></span> is a second order Schrödinger operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128975"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008977","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let mN and H=(Δ)m/2+V be a higher order Schrödinger operators in the Euclidean space Rn with VLloc1(Rn). In this paper, the authors characterize the infinitesimal relative boundedness and Trudinger's subordination for H on Lp(Rn) with p[1,), via the limit behavior of the family of operators {V(λ2Δ)m/2}λ(0,) and a generalized Kato-type class condition. The latter is weaker than the classical Kato class condition corresponding to the case p=1. All these characterizations are new even when H=Δ+V is a second order Schrödinger operator.
高阶薛定谔算子的无穷小相对有界性特征
设 m∈N 和 H=(-Δ)m/2+V 是欧几里得空间 Rn 中的高阶薛定谔算子,V∈Lloc1(Rn)。在本文中,作者通过算子{V(λ2-Δ)-m/2}λ∈(0,∞)族的极限行为和广义卡托类条件,描述了 H 在 p∈[1,∞]的 Lp(Rn)上的无穷小相对有界性和特鲁丁格从属性。后者弱于 p=1 情况下的经典加藤类条件。即使当 H=-Δ+V 是二阶薛定谔算子时,所有这些特征也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信