{"title":"Spray characteristics of steam-assisted oil atomization in Y-jet nozzles","authors":"Matheus Rover Barbieri , Lydia Achelis , Udo Fritsching","doi":"10.1016/j.ijmultiphaseflow.2024.105028","DOIUrl":null,"url":null,"abstract":"<div><div>Twin-fluid atomizers, valued for handling viscous fluids and high operating loads, are extensively used in combustion processes and oil refineries. In the latter scenario, internal mixing nozzles are employed in fluid catalytic cracking units for oil dispersion using steam as the dispersing medium. While steam-assisted atomization studies often focus on flue gas analysis, the associated steam/oil internal mixing process and the spray droplet dynamics lack proper investigation. Accordingly, this work explores the Y-jet nozzle performance for oil atomization using steam, aiming to determine favorable conditions for obtaining a stable spray with fine droplet distribution. This analysis is accomplished by characterizing the mixing chamber pressure, investigating the spray boundary instabilities using high-speed images, and exploring the spray droplet size using the shadowgraphy technique. Work relevance relies on performing experiments at industrially representative conditions, characterized by the similarity of important dimensionless numbers. Additionally, the nozzle design is optimized by varying key geometric parameters. The nozzle geometry and the operating condition impacts on the steam-assisted atomization performance and spray behavior constitute the main findings of this work. The outcomes highlight the relevance of the fluid dynamics investigation for optimized nozzle performance, involving a balance between spray stability and fine droplet distribution generation.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 105028"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224003057","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Twin-fluid atomizers, valued for handling viscous fluids and high operating loads, are extensively used in combustion processes and oil refineries. In the latter scenario, internal mixing nozzles are employed in fluid catalytic cracking units for oil dispersion using steam as the dispersing medium. While steam-assisted atomization studies often focus on flue gas analysis, the associated steam/oil internal mixing process and the spray droplet dynamics lack proper investigation. Accordingly, this work explores the Y-jet nozzle performance for oil atomization using steam, aiming to determine favorable conditions for obtaining a stable spray with fine droplet distribution. This analysis is accomplished by characterizing the mixing chamber pressure, investigating the spray boundary instabilities using high-speed images, and exploring the spray droplet size using the shadowgraphy technique. Work relevance relies on performing experiments at industrially representative conditions, characterized by the similarity of important dimensionless numbers. Additionally, the nozzle design is optimized by varying key geometric parameters. The nozzle geometry and the operating condition impacts on the steam-assisted atomization performance and spray behavior constitute the main findings of this work. The outcomes highlight the relevance of the fluid dynamics investigation for optimized nozzle performance, involving a balance between spray stability and fine droplet distribution generation.
双流体雾化器具有处理粘性流体和高工作负荷的特点,被广泛应用于燃烧过程和炼油厂。在后一种情况下,流体催化裂化装置中使用内部混合喷嘴,以蒸汽为分散介质进行油分散。蒸汽辅助雾化研究通常侧重于烟气分析,而对相关的蒸汽/油内部混合过程和喷雾液滴动力学缺乏适当的研究。因此,本研究探讨了使用蒸汽雾化油类的 Y 型喷嘴性能,旨在确定获得稳定喷雾和精细雾滴分布的有利条件。这项分析是通过确定混合室压力、使用高速图像研究喷雾边界不稳定性以及使用阴影成像技术探索喷雾液滴大小来完成的。工作的相关性依赖于在具有工业代表性的条件下进行实验,这些条件的特点是重要的无量纲数字相似。此外,还通过改变关键几何参数来优化喷嘴设计。喷嘴几何形状和工作条件对蒸汽辅助雾化性能和喷雾行为的影响构成了这项工作的主要发现。研究结果凸显了流体动力学研究对优化喷嘴性能的意义,其中涉及喷雾稳定性和细微液滴分布生成之间的平衡。
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.