Deep learning for pore-scale two-phase flow: Modelling drainage in realistic porous media

IF 7 Q1 ENERGY & FUELS
Seyed Reza ASADOLAHPOUR , Zeyun JIANG , Helen LEWIS , Chao MIN
{"title":"Deep learning for pore-scale two-phase flow: Modelling drainage in realistic porous media","authors":"Seyed Reza ASADOLAHPOUR ,&nbsp;Zeyun JIANG ,&nbsp;Helen LEWIS ,&nbsp;Chao MIN","doi":"10.1016/S1876-3804(25)60542-8","DOIUrl":null,"url":null,"abstract":"<div><div>In order to predict phase distributions within complex pore structures during two-phase capillary-dominated drainage, we select subsamples from computerized tomography (CT) images of rocks and simulated porous media, and develop a pore morphology-based simulator (PMS) to create a diverse dataset of phase distributions. With pixel size, interfacial tension, contact angle, and pressure as input parameters, convolutional neural network (CNN), recurrent neural network (RNN) and vision transformer (ViT) are transformed, trained and evaluated to select the optimal model for predicting phase distribution. It is found that commonly used CNN and RNN have deficiencies in capturing phase connectivity. Subsequently, we develop a higher-dimensional vision transformer (HD-ViT) that drains pores solely based on their size, regardless of their spatial location, with phase connectivity enforced as a post-processing step. This approach enables inference for images of varying sizes and resolutions with inlet-outlet setup at any coordinate directions. We demonstrate that HD-ViT maintains its effectiveness, accuracy and speed advantage on larger sandstone and carbonate images, compared with the microfluidic-based displacement experiment. In the end, we train and validate a 3D version of the model.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 5","pages":"Pages 1301-1315"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425605428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to predict phase distributions within complex pore structures during two-phase capillary-dominated drainage, we select subsamples from computerized tomography (CT) images of rocks and simulated porous media, and develop a pore morphology-based simulator (PMS) to create a diverse dataset of phase distributions. With pixel size, interfacial tension, contact angle, and pressure as input parameters, convolutional neural network (CNN), recurrent neural network (RNN) and vision transformer (ViT) are transformed, trained and evaluated to select the optimal model for predicting phase distribution. It is found that commonly used CNN and RNN have deficiencies in capturing phase connectivity. Subsequently, we develop a higher-dimensional vision transformer (HD-ViT) that drains pores solely based on their size, regardless of their spatial location, with phase connectivity enforced as a post-processing step. This approach enables inference for images of varying sizes and resolutions with inlet-outlet setup at any coordinate directions. We demonstrate that HD-ViT maintains its effectiveness, accuracy and speed advantage on larger sandstone and carbonate images, compared with the microfluidic-based displacement experiment. In the end, we train and validate a 3D version of the model.
孔隙尺度两相流的深度学习:模拟现实多孔介质中的排水
为了预测两相毛细管主导排水过程中复杂孔隙结构内的相分布,我们从岩石和模拟多孔介质的计算机断层扫描(CT)图像中选取子样本,并开发了基于孔隙形态的模拟器(PMS),以创建多样化的相分布数据集。以像素尺寸、界面张力、接触角和压力为输入参数,对卷积神经网络(CNN)、循环神经网络(RNN)和视觉转换器(ViT)进行转换、训练和评估,以选择预测相分布的最佳模型。结果发现,常用的 CNN 和 RNN 在捕捉相位连接性方面存在不足。随后,我们开发了一种高维视觉转换器(HD-ViT),该转换器只根据孔隙的大小进行排水,而不考虑其空间位置,并将相位连通性作为后处理步骤。这种方法可以推断出不同尺寸和分辨率的图像,并在任意坐标方向设置入口和出口。我们证明,与基于微流体的位移实验相比,HD-ViT 在较大的砂岩和碳酸盐图像上保持了其有效性、准确性和速度优势。最后,我们对模型的三维版本进行了训练和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信