Wentao Li , Tairui Zhang , Xiaochao Liu , Minghang Cheng , Xianjun Pei , Xincheng Wang , Ping Zhang , Wenwen Sun , Yong Wu , Zhikang Shen , Xin Ma , Zhonghua Ni
{"title":"Lap joining of Ti6Al4V titanium alloy by vortex flow-based friction stir welding","authors":"Wentao Li , Tairui Zhang , Xiaochao Liu , Minghang Cheng , Xianjun Pei , Xincheng Wang , Ping Zhang , Wenwen Sun , Yong Wu , Zhikang Shen , Xin Ma , Zhonghua Ni","doi":"10.1016/j.matchar.2024.114462","DOIUrl":null,"url":null,"abstract":"<div><div>The current study uses a novel vortex flow-based friction stir lap welding (VFSLW) process to weld 1.4 mm thick Ti6Al4V sheets, trying to replace the diffusion bonding in the superplastic forming/diffusion bonding process. The mechanical properties and joining mechanism of the VFSLW joint were investigated. Good weld formation was obtained at 300–350 rpm and 80 mm/min. No hook defect was formed in the lap interface. The lap joint fractured across the stir zone (SZ) in the top plate under the optimal parameters. The cracks initiated from the oxidation defect, where the oxides on the workpiece surface were involved in the SZ by the vortex during the welding. It suggests that a good argon shield is very important for the VFSLW of titanium alloy. The highest tensile strength reaches ∼890 MPa, up to 95 % of the base material. The formation of an α + β lamellar structure in the SZ is due to the peak welding temperature exceeding the β-transus temperature. In the bonded zone (BZ), a very thin layer with ultrafine α grains was formed by dynamic recrystallization in the α phase field, although its two sides are α + β lamellar structures. This is because of the oxidation on the workpiece surface during the welding process and the O element is a strong α stabilizer.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114462"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032400843X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The current study uses a novel vortex flow-based friction stir lap welding (VFSLW) process to weld 1.4 mm thick Ti6Al4V sheets, trying to replace the diffusion bonding in the superplastic forming/diffusion bonding process. The mechanical properties and joining mechanism of the VFSLW joint were investigated. Good weld formation was obtained at 300–350 rpm and 80 mm/min. No hook defect was formed in the lap interface. The lap joint fractured across the stir zone (SZ) in the top plate under the optimal parameters. The cracks initiated from the oxidation defect, where the oxides on the workpiece surface were involved in the SZ by the vortex during the welding. It suggests that a good argon shield is very important for the VFSLW of titanium alloy. The highest tensile strength reaches ∼890 MPa, up to 95 % of the base material. The formation of an α + β lamellar structure in the SZ is due to the peak welding temperature exceeding the β-transus temperature. In the bonded zone (BZ), a very thin layer with ultrafine α grains was formed by dynamic recrystallization in the α phase field, although its two sides are α + β lamellar structures. This is because of the oxidation on the workpiece surface during the welding process and the O element is a strong α stabilizer.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.