{"title":"Investigating the impact toughness properties and influential factors of titanium alloy joints","authors":"","doi":"10.1016/j.matchar.2024.114465","DOIUrl":null,"url":null,"abstract":"<div><div>Double-sided symmetric MIG welding can significantly enhance welding efficiency for thick titanium alloys and holds promising engineering applications. However, the use of high currents and deposition rates in this process not only boosts welding efficiency but also impacts joint performance, particularly its impact toughness. In this study, the Charpy impact performance of double-sided double-arc MIG welded joints in each region was studied via oscillometric impact tests, and the main factors affecting the impact of joints were revealed. Scanning electron microscope was used to observe the fractures, and the microstructure characteristics and grain orientation of the impact crack propagation path were observed and analysed via metallurgical microscopy and EBSD. In addition, the microstructure of each region of the joint was observed via metallographic microscopy and transmission electron microscopy, which revealed the microstructure characteristics of different regions of the joint and clarified the effects of microstructure and grain orientation in different regions of the welded joint on the impact performance of each region of the double-sided, double-arc MIG welded joint. The results show that the crack initiation energy across different regions of joints typically ranges between 18 and 20 J, with minimal variations. Crack propagation plays a pivotal role in determining impact toughness, which is influenced both by microstructural features and orientation. This provides guidance for subsequent adjustments and improvements to the impact performance of the joint.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Double-sided symmetric MIG welding can significantly enhance welding efficiency for thick titanium alloys and holds promising engineering applications. However, the use of high currents and deposition rates in this process not only boosts welding efficiency but also impacts joint performance, particularly its impact toughness. In this study, the Charpy impact performance of double-sided double-arc MIG welded joints in each region was studied via oscillometric impact tests, and the main factors affecting the impact of joints were revealed. Scanning electron microscope was used to observe the fractures, and the microstructure characteristics and grain orientation of the impact crack propagation path were observed and analysed via metallurgical microscopy and EBSD. In addition, the microstructure of each region of the joint was observed via metallographic microscopy and transmission electron microscopy, which revealed the microstructure characteristics of different regions of the joint and clarified the effects of microstructure and grain orientation in different regions of the welded joint on the impact performance of each region of the double-sided, double-arc MIG welded joint. The results show that the crack initiation energy across different regions of joints typically ranges between 18 and 20 J, with minimal variations. Crack propagation plays a pivotal role in determining impact toughness, which is influenced both by microstructural features and orientation. This provides guidance for subsequent adjustments and improvements to the impact performance of the joint.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.