{"title":"Bed strength in sheared beds of mono- and bi-disperse particles: Dependence on geometrical and mechanical properties of constituent particles","authors":"Feng Zhao , Yukie Tanino , Jianchun Guo , Rui He , Jichuan Ren , Ji Zeng , Weihua Chen , Liuke Huang","doi":"10.1016/j.powtec.2024.120286","DOIUrl":null,"url":null,"abstract":"<div><div>Temporary plugging zones are low-permeability fracture-scale plugs ‘assembled’ in situ by injecting polymer particles into petroleum reservoirs. We applied the rolling resistance linear model to simulate the shear strength of a rectangular packed bed, our model for a temporary plugging zone, comprising either uniform-sized particles or a binary mixture of larger bridging particles and smaller filling particles. Simulation results show that the strength of uniform beds increases with the size, the aspect ratio, the friction coefficient, and the Young’s modulus of the particles. The strength of binary packed beds first increased and then decreased as the fractional volume of the domain occupied by filling particles increased. Maximum strength was achieved when bridging particles have uniform Young’s modulus and aspect ratio but a range of friction coefficients, and their friction coefficient, Young’s modulus and aspect ratio are 21%, 17% and 18% larger than those of filling particles.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120286"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009306","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Temporary plugging zones are low-permeability fracture-scale plugs ‘assembled’ in situ by injecting polymer particles into petroleum reservoirs. We applied the rolling resistance linear model to simulate the shear strength of a rectangular packed bed, our model for a temporary plugging zone, comprising either uniform-sized particles or a binary mixture of larger bridging particles and smaller filling particles. Simulation results show that the strength of uniform beds increases with the size, the aspect ratio, the friction coefficient, and the Young’s modulus of the particles. The strength of binary packed beds first increased and then decreased as the fractional volume of the domain occupied by filling particles increased. Maximum strength was achieved when bridging particles have uniform Young’s modulus and aspect ratio but a range of friction coefficients, and their friction coefficient, Young’s modulus and aspect ratio are 21%, 17% and 18% larger than those of filling particles.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.