{"title":"Excellent combinations of strength-ductility and corrosion resistance in SAF 2205 duplex stainless steel with multi-scale grain distribution","authors":"","doi":"10.1016/j.matchar.2024.114490","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a multi-scale grain structure was obtained in SAF 2205 duplex stainless steel (DSS) by severe deformation and short-term annealing process. The influence of this structure on the mechanical properties and electrochemical behavior is systematically investigated. Experimental results indicate that the sample subjected to short-term annealing at 1000 °C (SA-1000 °C) exhibits the best comprehensive properties, with a yield strength (YS) of 652.6 MPa and an elongation (EL) of 39.9 %. Both strength and ductility surpass those of the original sample and long-term annealed (LA-1000 °C) samples. The strength-ductility product is increased by 32 % compared to the original sample and by 18 % compared to the LA-1000 °C sample. The increase in YS is predominantly attributed to dislocation strengthening and grain refinement strengthening, and the heterogeneous microstructure leads to good ductility. Moreover, the multi-scale distribution of the grain structure exhibits enhanced corrosion resistance due to the increased low-Σ grain boundaries and the promotion of stable passivation film formation by a limited number of defects, thereby mitigating the corrosion rate.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008714","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a multi-scale grain structure was obtained in SAF 2205 duplex stainless steel (DSS) by severe deformation and short-term annealing process. The influence of this structure on the mechanical properties and electrochemical behavior is systematically investigated. Experimental results indicate that the sample subjected to short-term annealing at 1000 °C (SA-1000 °C) exhibits the best comprehensive properties, with a yield strength (YS) of 652.6 MPa and an elongation (EL) of 39.9 %. Both strength and ductility surpass those of the original sample and long-term annealed (LA-1000 °C) samples. The strength-ductility product is increased by 32 % compared to the original sample and by 18 % compared to the LA-1000 °C sample. The increase in YS is predominantly attributed to dislocation strengthening and grain refinement strengthening, and the heterogeneous microstructure leads to good ductility. Moreover, the multi-scale distribution of the grain structure exhibits enhanced corrosion resistance due to the increased low-Σ grain boundaries and the promotion of stable passivation film formation by a limited number of defects, thereby mitigating the corrosion rate.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.