Yu Xiao , Song-Wei Wang , Hong-Wu Song , Shuai-Feng Chen , Qi Yu , Shi-Hong Zhang
{"title":"La drives the remarkable strength enhancement of the Cu-Cr-Zr alloy through traditional thermo-mechanical treatment","authors":"Yu Xiao , Song-Wei Wang , Hong-Wu Song , Shuai-Feng Chen , Qi Yu , Shi-Hong Zhang","doi":"10.1016/j.matchar.2024.114488","DOIUrl":null,"url":null,"abstract":"<div><div>The Cu-1Cr-0.1Zr alloy with different La addition (0 %, 0.07 % and 0.14 wt%) was processed using industry suitable two-step cold rolling and aging treatment to achieve superior strength and electrical conductivity. The role of La addition on the microstructure evolution and comprehensive properties of the Cu-1Cr-0.1Zr alloy is investigated during the second rolling and subsequent aging stages. During pre-aging process, the presence of La in the Cu-1Cr-0.1Zr-0.07La alloy led to formation of smaller precipitate sizes compared to La-free Cu-1Cr-0.1Zr alloy. This facilitates a stronger cut interaction between dislocations and precipitates during secondary rolling process, which promotes the redissolution of precipitates into Cu matrix and thus results in a larger decline of 44.72 % ICAS for the electrical conductivity of Cu-1Cr-0.1Zr-0.07La alloy. After post-aging treatment, precipitates are newly formed with increased number and refined size of Cr precipitates with maintaining a coherent relationship with the matrix. Besides, the addition of La promotes Cr-rich phase precipitation and dislocation accumulation. Resultantly, remarkable increase in tensile strength by 11 % with the addition of 0.07wt%La. While, the 0.14La added alloy exhibits comprehensive properties of tensile strength 600 MPa and electrical conductivity 80.08 %IACS after aging at 440 °C for 180 min. The increase in strength was primarily attributed to precipitation strengthening and dislocation strengthening. This work provides new kinds of Cu-1Cr-0.1Zr alloy and industrial suitable thermo-mechanical treatment for fabricating high performance cooper alloy sheets.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114488"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008696","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The Cu-1Cr-0.1Zr alloy with different La addition (0 %, 0.07 % and 0.14 wt%) was processed using industry suitable two-step cold rolling and aging treatment to achieve superior strength and electrical conductivity. The role of La addition on the microstructure evolution and comprehensive properties of the Cu-1Cr-0.1Zr alloy is investigated during the second rolling and subsequent aging stages. During pre-aging process, the presence of La in the Cu-1Cr-0.1Zr-0.07La alloy led to formation of smaller precipitate sizes compared to La-free Cu-1Cr-0.1Zr alloy. This facilitates a stronger cut interaction between dislocations and precipitates during secondary rolling process, which promotes the redissolution of precipitates into Cu matrix and thus results in a larger decline of 44.72 % ICAS for the electrical conductivity of Cu-1Cr-0.1Zr-0.07La alloy. After post-aging treatment, precipitates are newly formed with increased number and refined size of Cr precipitates with maintaining a coherent relationship with the matrix. Besides, the addition of La promotes Cr-rich phase precipitation and dislocation accumulation. Resultantly, remarkable increase in tensile strength by 11 % with the addition of 0.07wt%La. While, the 0.14La added alloy exhibits comprehensive properties of tensile strength 600 MPa and electrical conductivity 80.08 %IACS after aging at 440 °C for 180 min. The increase in strength was primarily attributed to precipitation strengthening and dislocation strengthening. This work provides new kinds of Cu-1Cr-0.1Zr alloy and industrial suitable thermo-mechanical treatment for fabricating high performance cooper alloy sheets.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.