{"title":"Ablation behavior of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC-Si ceramics via reactive melt infiltration","authors":"","doi":"10.1016/j.matchar.2024.114468","DOIUrl":null,"url":null,"abstract":"<div><div>(Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub>-SiC ceramics with an open porosity of only 0.49 % were successfully fabricated in this work by the reactive melt infiltration (RMI) method. Air plasma flame ablation behavior of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub>-SiC ceramics under 2300 °C temperature exhibited excellent resistance with mass and linear ablation rates of 3.66 mg/s and 0.88 μm/s, respectively. During ablation, the transition from continuous melting sublimation of Si and oxidation of SiC to oxidation of (Ti<sub>0.2</sub>Zr<sub>0.2</sub>Hf<sub>0.2</sub>Nb<sub>0.2</sub>Ta<sub>0.2</sub>)B<sub>2</sub> occurred. The uphill diffusion of Ti atoms transited (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> to Ti(Nb<sub>x</sub>Ta<sub>1-x</sub>)<sub>2</sub>O<sub>7</sub> while Zr<sub>0.5</sub>Hf<sub>0.5</sub>O<sub>2</sub> continuously precipitated. A multicomponent oxide layer of (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> along with (Zr,Hf)<sub>6</sub>Ta<sub>2</sub>O<sub>17</sub>, (Hf,Zr)(TiO<sub>4</sub>)<sub>2</sub>, and (Zr,Hf)<sub>x</sub>(Ti,Ta)<sub>1-x</sub>O embedded in SiO<sub>2</sub> melt was eventually formed on the ceramic surface. This oxide layer was spread above the high melting point Zr<sub>0.5</sub>Hf<sub>0.5</sub>O<sub>2</sub>, Ti(Nb<sub>x</sub>Ta<sub>1-x</sub>)<sub>2</sub>O, and low oxygen content (Ti,Zr,Hf,Nb,Ta)O<sub>x</sub> to form a stable, dense, and high viscosity protective layer.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008490","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC ceramics with an open porosity of only 0.49 % were successfully fabricated in this work by the reactive melt infiltration (RMI) method. Air plasma flame ablation behavior of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2-SiC ceramics under 2300 °C temperature exhibited excellent resistance with mass and linear ablation rates of 3.66 mg/s and 0.88 μm/s, respectively. During ablation, the transition from continuous melting sublimation of Si and oxidation of SiC to oxidation of (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 occurred. The uphill diffusion of Ti atoms transited (Ti,Zr,Hf,Nb,Ta)Ox to Ti(NbxTa1-x)2O7 while Zr0.5Hf0.5O2 continuously precipitated. A multicomponent oxide layer of (Ti,Zr,Hf,Nb,Ta)Ox along with (Zr,Hf)6Ta2O17, (Hf,Zr)(TiO4)2, and (Zr,Hf)x(Ti,Ta)1-xO embedded in SiO2 melt was eventually formed on the ceramic surface. This oxide layer was spread above the high melting point Zr0.5Hf0.5O2, Ti(NbxTa1-x)2O, and low oxygen content (Ti,Zr,Hf,Nb,Ta)Ox to form a stable, dense, and high viscosity protective layer.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.