Zhimin Liang , Zhuobin Sun , Dan Liu , Xiao Yang , Yongmei Liang , Dianlong Wang , Dejun Yan , Yuzhong Rao , Kehong Wang
{"title":"Enhancing mechanical and corrosion properties of Al-Zn-Mg-Cu alloy through electropulsing and aging alternate treatment","authors":"Zhimin Liang , Zhuobin Sun , Dan Liu , Xiao Yang , Yongmei Liang , Dianlong Wang , Dejun Yan , Yuzhong Rao , Kehong Wang","doi":"10.1016/j.matchar.2024.114485","DOIUrl":null,"url":null,"abstract":"<div><div>The contradiction between mechanical and corrosion properties restricts the further research and application of Al-Zn-Mg-Cu alloy. Studies report a new technique, electropulsing and aging alternate treatment (EPAAT), including twice electropulsing and aging treatment, to solve this contradiction by precisely controlling the intragranular precipitates and grain boundary precipitates (GBPs). The results show that the grain boundary precipitates (GBPs, η) are discontinuous and the intragranular precipitates (η’) are not coarsened after EPAAT. The precise regulation of precipitated phase by EPAAT can be attributed the differing effect of electropulsing current on the GBPs and the intragranular precipitates. Utilize electropulsing primary treatment to obtain the supersaturated solid solution. Following natural aging, the small continuous phases at the grain boundary and the GP zones within the grain were precipitated again. The small continuous GPBs of the sample diffuse along the grain boundaries and become discontinuously distributed, while the GP zones within the grain dissolve with under the electropulsing secondary treatment. After artificial aging, the intragranular phase is fully precipitated, yet the GBPs remain unchanged, thereby achieving phase regulation. Consequently, the <em>i</em><sub>corr</sub> of Al-Zn-Mg-Cu alloy decreases from 28 to 5.87 μA/cm<sup>2</sup> and the tensile strength increases from 511 MPa to 524 MPa. The EPAAT technology realizes the accurate treatment of Al-Zn-Mg-Cu alloys and provides a new solution for improving strength and corrosion properties.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114485"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008660","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The contradiction between mechanical and corrosion properties restricts the further research and application of Al-Zn-Mg-Cu alloy. Studies report a new technique, electropulsing and aging alternate treatment (EPAAT), including twice electropulsing and aging treatment, to solve this contradiction by precisely controlling the intragranular precipitates and grain boundary precipitates (GBPs). The results show that the grain boundary precipitates (GBPs, η) are discontinuous and the intragranular precipitates (η’) are not coarsened after EPAAT. The precise regulation of precipitated phase by EPAAT can be attributed the differing effect of electropulsing current on the GBPs and the intragranular precipitates. Utilize electropulsing primary treatment to obtain the supersaturated solid solution. Following natural aging, the small continuous phases at the grain boundary and the GP zones within the grain were precipitated again. The small continuous GPBs of the sample diffuse along the grain boundaries and become discontinuously distributed, while the GP zones within the grain dissolve with under the electropulsing secondary treatment. After artificial aging, the intragranular phase is fully precipitated, yet the GBPs remain unchanged, thereby achieving phase regulation. Consequently, the icorr of Al-Zn-Mg-Cu alloy decreases from 28 to 5.87 μA/cm2 and the tensile strength increases from 511 MPa to 524 MPa. The EPAAT technology realizes the accurate treatment of Al-Zn-Mg-Cu alloys and provides a new solution for improving strength and corrosion properties.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.