Exploring certain nonlinear localized modes in an anisotropic ferromagnet with biquadratic interaction using quasi-discrete approximation

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
S. Suganya , B. Srividya , A. Prabhu
{"title":"Exploring certain nonlinear localized modes in an anisotropic ferromagnet with biquadratic interaction using quasi-discrete approximation","authors":"S. Suganya ,&nbsp;B. Srividya ,&nbsp;A. Prabhu","doi":"10.1016/j.cjph.2024.09.036","DOIUrl":null,"url":null,"abstract":"<div><div>We present an analytical work on nonlinear localized modes in an anisotropic ferromagnet with added biquadratic interaction. Within the framework of quasi-discrete multiple scale approximation, it is found that the dynamics of the system is associated with the nonlinear Schrödinger (NLS) equation. The effect of anisotropic and biquadratic interactions on the nature of the linear dispersion curve is discussed. The criteria for the existence of bright and dark solitons are explored. Different classes of soliton solutions are constructed using the Hirota bilinearization method. Also, it is noted that the system and soliton parameters significantly modify the characteristics of the solitons by the inclusion of highly nonlinear invariant biquadratic interaction.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003812","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analytical work on nonlinear localized modes in an anisotropic ferromagnet with added biquadratic interaction. Within the framework of quasi-discrete multiple scale approximation, it is found that the dynamics of the system is associated with the nonlinear Schrödinger (NLS) equation. The effect of anisotropic and biquadratic interactions on the nature of the linear dispersion curve is discussed. The criteria for the existence of bright and dark solitons are explored. Different classes of soliton solutions are constructed using the Hirota bilinearization method. Also, it is noted that the system and soliton parameters significantly modify the characteristics of the solitons by the inclusion of highly nonlinear invariant biquadratic interaction.

Abstract Image

用准离散近似法探索具有双四边形相互作用的各向异性铁磁体中的某些非线性局部模式
我们介绍了关于各向异性铁磁体中的非线性局部模式的分析工作,该铁磁体具有附加的双四次方相互作用。在准离散多尺度近似的框架内,我们发现该系统的动力学与非线性薛定谔方程(NLS)有关。讨论了各向异性和双四性相互作用对线性分散曲线性质的影响。探讨了亮孤子和暗孤子存在的标准。使用 Hirota 双线性化方法构建了不同类别的孤子解。此外,我们还注意到系统和孤子参数通过加入高度非线性不变的双二次方相互作用而极大地改变了孤子的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信