Gyudong Kim , Sooin Kim , Hanseob Jeong , Jaewon Chung
{"title":"Numerical analysis of mixing performance in Y-junction mixers and its impact on yields from supercritical water hydrolysis","authors":"Gyudong Kim , Sooin Kim , Hanseob Jeong , Jaewon Chung","doi":"10.1016/j.supflu.2024.106425","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the mixing behavior in a Y-junction mixer for supercritical water hydrolysis using large eddy simulation with a discrete phase model. Yield changes were simulated using a two-step reaction model with first-order kinetics, based on particles’ temporal temperature data. Effective mixing produced closely matched mass and particle flow temperature distributions, both exhibiting bell-shaped profiles near the mixed temperature. Although variations in flow rate within ±25 % and changes in the inlet temperatures of supercritical water from 350 °C to 430 °C and subcritical water from 100 °C to 170 °C did not significantly affect the overall mixing performance, they did alter the mixed temperature and, subsequently, yield changes. Additionally, backflow occurred when Richardson number for the subcritical inlet reached approximately 7. In effective mixing, simulated yields were approximately 15 % lower than the ideal theoretical yields, calculated using the reaction rate constant at the mixed temperature.</div></div>","PeriodicalId":17078,"journal":{"name":"Journal of Supercritical Fluids","volume":"215 ","pages":"Article 106425"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercritical Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896844624002602","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the mixing behavior in a Y-junction mixer for supercritical water hydrolysis using large eddy simulation with a discrete phase model. Yield changes were simulated using a two-step reaction model with first-order kinetics, based on particles’ temporal temperature data. Effective mixing produced closely matched mass and particle flow temperature distributions, both exhibiting bell-shaped profiles near the mixed temperature. Although variations in flow rate within ±25 % and changes in the inlet temperatures of supercritical water from 350 °C to 430 °C and subcritical water from 100 °C to 170 °C did not significantly affect the overall mixing performance, they did alter the mixed temperature and, subsequently, yield changes. Additionally, backflow occurred when Richardson number for the subcritical inlet reached approximately 7. In effective mixing, simulated yields were approximately 15 % lower than the ideal theoretical yields, calculated using the reaction rate constant at the mixed temperature.
期刊介绍:
The Journal of Supercritical Fluids is an international journal devoted to the fundamental and applied aspects of supercritical fluids and processes. Its aim is to provide a focused platform for academic and industrial researchers to report their findings and to have ready access to the advances in this rapidly growing field. Its coverage is multidisciplinary and includes both basic and applied topics.
Thermodynamics and phase equilibria, reaction kinetics and rate processes, thermal and transport properties, and all topics related to processing such as separations (extraction, fractionation, purification, chromatography) nucleation and impregnation are within the scope. Accounts of specific engineering applications such as those encountered in food, fuel, natural products, minerals, pharmaceuticals and polymer industries are included. Topics related to high pressure equipment design, analytical techniques, sensors, and process control methodologies are also within the scope of the journal.