{"title":"Machine learning of metal-organic framework design for carbon dioxide capture and utilization","authors":"Yang Jeong Park , Sungroh Yoon , Sung Eun Jerng","doi":"10.1016/j.jcou.2024.102941","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) are attractive materials with easily tunable porous structures. Their selective carbon dioxide (CO<sub>2</sub>) capture ability can be varied by altering the functionality of the organic ligands. However, rule-based approaches to tuning and developing MOFs with high CO<sub>2</sub> capture and conversion abilities are hindered by the numerous possible combinations of metal ions and organic linkers. Recently, machine learning (ML) has been applied to unravel key descriptors in predicting the performance of MOFs. This review summarizes recent advancements in ML models for MOFs in CO<sub>2</sub> capture and utilization, including high-throughput screening, neural network interatomic potential, and generative models. The development of sophisticated ML models for designing high-performance MOFs will play a critical role in addressing climate change in the future. Finally, the main challenges and limitations of current approaches in designing high-performance MOFs are discussed.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"89 ","pages":"Article 102941"},"PeriodicalIF":7.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982024002762","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-organic frameworks (MOFs) are attractive materials with easily tunable porous structures. Their selective carbon dioxide (CO2) capture ability can be varied by altering the functionality of the organic ligands. However, rule-based approaches to tuning and developing MOFs with high CO2 capture and conversion abilities are hindered by the numerous possible combinations of metal ions and organic linkers. Recently, machine learning (ML) has been applied to unravel key descriptors in predicting the performance of MOFs. This review summarizes recent advancements in ML models for MOFs in CO2 capture and utilization, including high-throughput screening, neural network interatomic potential, and generative models. The development of sophisticated ML models for designing high-performance MOFs will play a critical role in addressing climate change in the future. Finally, the main challenges and limitations of current approaches in designing high-performance MOFs are discussed.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.