Accelerated North Atlantic surface warming reshapes the Atlantic Multidecadal Variability

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Davide Zanchettin, Angelo Rubino
{"title":"Accelerated North Atlantic surface warming reshapes the Atlantic Multidecadal Variability","authors":"Davide Zanchettin, Angelo Rubino","doi":"10.1038/s43247-024-01804-x","DOIUrl":null,"url":null,"abstract":"Observed North Atlantic sea-surface temperatures are modulated by a recurrent alternation of anomalously warm and cold interdecadal phases known as Atlantic Multidecadal Variability. Here we use observations and a multi-model ensemble of climate simulations to demonstrate an ongoing acceleration of North Atlantic surface warming, which implies a smaller contribution of the Atlantic Multidecadal Variability to 21st century North Atlantic sea-surface temperature anomalies than previously thought. Future projections of the Atlantic Multidecadal Variability from realistic climate simulations are poorly constrained, yet a relaxation to a neutral phase by the mid-21st century emerges as the most probable evolution of the Atlantic Multidecadal Variability. In the simulations, the mitigating effects of a less likely upcoming cold phase of the Atlantic Multidecadal Variability are overwhelmed by fast North Atlantic surface warming, which is robustly projected to persist in upcoming decades independent of emission scenarios. Sustained North Atlantic surface warming is therefore expected to continue in the near future. Warming of North Atlantic sea surface temperatures is accelerating, and projected to be stronger than natural variability associated with the Atlantic Multidecadal Variability, according to an analysis of climate model simulations.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01804-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01804-x","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Observed North Atlantic sea-surface temperatures are modulated by a recurrent alternation of anomalously warm and cold interdecadal phases known as Atlantic Multidecadal Variability. Here we use observations and a multi-model ensemble of climate simulations to demonstrate an ongoing acceleration of North Atlantic surface warming, which implies a smaller contribution of the Atlantic Multidecadal Variability to 21st century North Atlantic sea-surface temperature anomalies than previously thought. Future projections of the Atlantic Multidecadal Variability from realistic climate simulations are poorly constrained, yet a relaxation to a neutral phase by the mid-21st century emerges as the most probable evolution of the Atlantic Multidecadal Variability. In the simulations, the mitigating effects of a less likely upcoming cold phase of the Atlantic Multidecadal Variability are overwhelmed by fast North Atlantic surface warming, which is robustly projected to persist in upcoming decades independent of emission scenarios. Sustained North Atlantic surface warming is therefore expected to continue in the near future. Warming of North Atlantic sea surface temperatures is accelerating, and projected to be stronger than natural variability associated with the Atlantic Multidecadal Variability, according to an analysis of climate model simulations.

Abstract Image

北大西洋表层加速变暖重塑大西洋十年多变性
观测到的北大西洋海面温度受被称为 "大西洋多年代变率 "的年代际异常冷暖交替现象的影响。在这里,我们利用观测数据和多模式气候模拟集合来证明北大西洋表面温度正在加速变暖,这意味着大西洋多年代变率对 21 世纪北大西洋海面温度异常的影响比以前认为的要小。现实气候模拟对大西洋多年代变率的未来预测限制较少,但大西洋多年代变率最有可能的演变是到 21 世纪中叶放松到中性阶段。在模拟中,北大西洋地表快速变暖压倒了大西洋多年变率不太可能出现的寒冷阶段的缓解效应,而北大西洋地表变暖预计将在未来几十年持续存在,与排放情景无关。因此,预计在不久的将来,北大西洋海面将继续持续变暖。根据对气候模型模拟的分析,北大西洋海面温度正在加速变暖,预计将强于与大西洋十年多变性相关的自然变率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信