Joshua S. Clayton, Mridul Johari, Rhonda L. Taylor, Lein Dofash, Georgina Allan, Gavin Monahan, Peter J. Houweling, Gianina Ravenscroft, Nigel G. Laing
{"title":"An Update on Reported Variants in the Skeletal Muscle α-Actin (ACTA1) Gene","authors":"Joshua S. Clayton, Mridul Johari, Rhonda L. Taylor, Lein Dofash, Georgina Allan, Gavin Monahan, Peter J. Houweling, Gianina Ravenscroft, Nigel G. Laing","doi":"10.1155/2024/6496088","DOIUrl":null,"url":null,"abstract":"<p>The <i>ACTA1</i> gene encodes skeletal muscle alpha-actin, which forms the core of the sarcomeric thin filament in adult skeletal muscle. ACTA1 represents one of six highly conserved actin proteins that have all been associated with human disease. The first 15 pathogenic variants in <i>ACTA1</i> were reported in 1999, which expanded to 177 in 2009. Here, we update on the now 607 total variants reported in LOVD, HGMD, and ClinVar, which includes 343 reported pathogenic/likely pathogenic (P/LP) variants. We also provide suggested <i>ACTA1</i>-specific modifications to ACMG variant interpretation guidelines based on our analysis of known variants, gnomAD reports, and pathogenicity in other actin isoforms. Using these criteria, we report a total of 447 P/LP <i>ACTA1</i> variants. From a clinical perspective, the number of reported <i>ACTA1</i> disease phenotypes has grown from five to 20, albeit with some overlap. The vast majority (74%) of <i>ACTA1</i> variants cause nemaline myopathy (NEM), but there are increasing numbers that cause cardiomyopathy and novel phenotypes such as distal myopathy. We highlight challenges associated with identifying genotype–phenotype correlations for <i>ACTA1</i>. Finally, we summarize key animal models and review the current state of preclinical treatments for <i>ACTA1</i> disease. This update provides important resources and recommendations for the study and interpretation of <i>ACTA1</i> variants.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":"2024 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6496088","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Mutation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6496088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The ACTA1 gene encodes skeletal muscle alpha-actin, which forms the core of the sarcomeric thin filament in adult skeletal muscle. ACTA1 represents one of six highly conserved actin proteins that have all been associated with human disease. The first 15 pathogenic variants in ACTA1 were reported in 1999, which expanded to 177 in 2009. Here, we update on the now 607 total variants reported in LOVD, HGMD, and ClinVar, which includes 343 reported pathogenic/likely pathogenic (P/LP) variants. We also provide suggested ACTA1-specific modifications to ACMG variant interpretation guidelines based on our analysis of known variants, gnomAD reports, and pathogenicity in other actin isoforms. Using these criteria, we report a total of 447 P/LP ACTA1 variants. From a clinical perspective, the number of reported ACTA1 disease phenotypes has grown from five to 20, albeit with some overlap. The vast majority (74%) of ACTA1 variants cause nemaline myopathy (NEM), but there are increasing numbers that cause cardiomyopathy and novel phenotypes such as distal myopathy. We highlight challenges associated with identifying genotype–phenotype correlations for ACTA1. Finally, we summarize key animal models and review the current state of preclinical treatments for ACTA1 disease. This update provides important resources and recommendations for the study and interpretation of ACTA1 variants.
期刊介绍:
Human Mutation is a peer-reviewed journal that offers publication of original Research Articles, Methods, Mutation Updates, Reviews, Database Articles, Rapid Communications, and Letters on broad aspects of mutation research in humans. Reports of novel DNA variations and their phenotypic consequences, reports of SNPs demonstrated as valuable for genomic analysis, descriptions of new molecular detection methods, and novel approaches to clinical diagnosis are welcomed. Novel reports of gene organization at the genomic level, reported in the context of mutation investigation, may be considered. The journal provides a unique forum for the exchange of ideas, methods, and applications of interest to molecular, human, and medical geneticists in academic, industrial, and clinical research settings worldwide.