Identifying Recycled Materials Using Mo Isotopes in Intraplate Alkali Basalts From the Southeastern Margin of Tibetan Plateau

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Dongjing Xu, Yue Qi, Qiang Wang, Jie Li, Derek A. Wyman, Andrew C. Kerr, Xiuzheng Zhang, Peina Guo
{"title":"Identifying Recycled Materials Using Mo Isotopes in Intraplate Alkali Basalts From the Southeastern Margin of Tibetan Plateau","authors":"Dongjing Xu,&nbsp;Yue Qi,&nbsp;Qiang Wang,&nbsp;Jie Li,&nbsp;Derek A. Wyman,&nbsp;Andrew C. Kerr,&nbsp;Xiuzheng Zhang,&nbsp;Peina Guo","doi":"10.1029/2024GC011750","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Mantle heterogeneity in lithology and geochemistry is often attributed to recycled subducted materials. While distinct mantle end-members are identified by radiogenic isotopes, the specific recycled materials contributing to this heterogeneity remain debated. This study presents Mo-Sr-Nd-Pb isotopic data for OIB-like alkali basalts from the Maguan area in the southeastern Tibetan Plateau, focusing on slab inputs' role in mantle heterogeneity. The Miocene (ca. 13 Ma) Maguan alkali basalts are divided into two types based on petrographic and geochemical characteristics, showing similar Sr-Nd-Pb isotopic signatures but different Mo isotopic compositions. Type I basalts exhibit a wide δ<sup>98/95</sup>Mo range (−0.31‰ to −1.03‰, average −0.47‰ ± 0.06‰, 2SD = 0.40‰, <i>n</i> = 13), while type II basalts have heavy and constant δ<sup>98/95</sup>Mo values (−0.11‰ to −0.17‰, average −0.14‰ ± 0.01‰, 2SD = 0.05‰, <i>n</i> = 6). The unique low δ<sup>98/95</sup>Mo value (−1.03‰) in type I basalts is among the lowest reported in OIB-like continental basalts. Type I basalts likely originate from an enriched asthenospheric mantle metasomatized by melts from recycled dehydrated oceanic crust and sediments, whereas type II basalts are derived from partial melting of an enriched asthenospheric mantle metasomatized by melts from recycled serpentinized peridotites. The residual Tethys oceanic slabs in the deep mantle significantly contribute to the mantle source of the Maguan basalts. The formation of Maguan Miocene magmas may be linked to mantle upwelling induced by the subduction of the West Burma plate. This study highlights the Mo isotopic system's utility in tracing complex slab fluxes generating mantle geochemical heterogeneity.</p>\n </section>\n </div>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011750","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011750","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mantle heterogeneity in lithology and geochemistry is often attributed to recycled subducted materials. While distinct mantle end-members are identified by radiogenic isotopes, the specific recycled materials contributing to this heterogeneity remain debated. This study presents Mo-Sr-Nd-Pb isotopic data for OIB-like alkali basalts from the Maguan area in the southeastern Tibetan Plateau, focusing on slab inputs' role in mantle heterogeneity. The Miocene (ca. 13 Ma) Maguan alkali basalts are divided into two types based on petrographic and geochemical characteristics, showing similar Sr-Nd-Pb isotopic signatures but different Mo isotopic compositions. Type I basalts exhibit a wide δ98/95Mo range (−0.31‰ to −1.03‰, average −0.47‰ ± 0.06‰, 2SD = 0.40‰, n = 13), while type II basalts have heavy and constant δ98/95Mo values (−0.11‰ to −0.17‰, average −0.14‰ ± 0.01‰, 2SD = 0.05‰, n = 6). The unique low δ98/95Mo value (−1.03‰) in type I basalts is among the lowest reported in OIB-like continental basalts. Type I basalts likely originate from an enriched asthenospheric mantle metasomatized by melts from recycled dehydrated oceanic crust and sediments, whereas type II basalts are derived from partial melting of an enriched asthenospheric mantle metasomatized by melts from recycled serpentinized peridotites. The residual Tethys oceanic slabs in the deep mantle significantly contribute to the mantle source of the Maguan basalts. The formation of Maguan Miocene magmas may be linked to mantle upwelling induced by the subduction of the West Burma plate. This study highlights the Mo isotopic system's utility in tracing complex slab fluxes generating mantle geochemical heterogeneity.

Abstract Image

利用青藏高原东南边缘板内碱性玄武岩中的钼同位素识别再生材料
地幔在岩石学和地球化学方面的异质性通常归因于再循环的俯冲物质。虽然通过放射性同位素可以确定不同的地幔末端成分,但造成这种异质性的具体再循环物质仍存在争议。本研究展示了青藏高原东南部马关地区类似OIB的碱性玄武岩的Mo-Sr-Nd-Pb同位素数据,重点研究板块输入在地幔异质性中的作用。根据岩石学和地球化学特征,中新世(约 13 Ma)马关碱性玄武岩被分为两类,表现出相似的 Sr-Nd-Pb 同位素特征,但不同的 Mo 同位素组成。Ⅰ型玄武岩的δ98/95Mo范围较大(-0.31‰~-1.03‰,平均-0.47‰±0.06‰,2SD = 0.40‰,n = 13),而Ⅱ型玄武岩的δ98/95Mo值较重且恒定(-0.11‰~-0.17‰,平均-0.14‰±0.01‰,2SD = 0.05‰,n = 6)。Ⅰ型玄武岩中独特的低δ98/95Mo值(-1.03‰)是所报道的OIB类大陆玄武岩中最低值之一。I型玄武岩很可能来源于回收的脱水大洋地壳和沉积物的熔体对富集的天体层地幔的变质作用,而II型玄武岩则来源于回收的蛇绿岩化橄榄岩的熔体对富集的天体层地幔的部分熔化作用。深地幔中残留的特提斯洋板块是马关玄武岩的重要地幔源。马关中新世岩浆的形成可能与西缅甸板块俯冲引起的地幔上涌有关。这项研究强调了钼同位素系统在追踪产生地幔地球化学异质性的复杂板块通量方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信