Comparison of nonarchimedean and logarithmic mirror constructions via the Frobenius structure theorem

IF 1 2区 数学 Q1 MATHEMATICS
Samuel Johnston
{"title":"Comparison of nonarchimedean and logarithmic mirror constructions via the Frobenius structure theorem","authors":"Samuel Johnston","doi":"10.1112/jlms.12998","DOIUrl":null,"url":null,"abstract":"<p>For a log Calabi Yau pair (<span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$X,D$</annotation>\n </semantics></math>) with <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∖</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$X\\setminus D$</annotation>\n </semantics></math> smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra constructed by Gross–Siebert are given by the naive curve counts defined by Keel–Yu. As a corollary, we deduce that the equality of the mirror algebras constructed by Gross–Siebert and Keel–Yu in the case <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>∖</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$X\\setminus D$</annotation>\n </semantics></math> contains a Zariski dense torus. In addition, we use this result to prove a mirror conjecture proposed by Mandel for Fano pairs satisfying the maximal degeneracy assumption.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12998","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12998","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a log Calabi Yau pair ( X , D $X,D$ ) with X D $X\setminus D$ smooth affine, satisfying either a maximal degeneracy assumption or contains a Zariski dense torus, we prove under the condition that D is the support of a nef divisor that the structure constants defining a trace form on the mirror algebra constructed by Gross–Siebert are given by the naive curve counts defined by Keel–Yu. As a corollary, we deduce that the equality of the mirror algebras constructed by Gross–Siebert and Keel–Yu in the case X D $X\setminus D$ contains a Zariski dense torus. In addition, we use this result to prove a mirror conjecture proposed by Mandel for Fano pairs satisfying the maximal degeneracy assumption.

Abstract Image

通过弗罗贝尼斯结构定理比较非阿基米德和对数镜像构造
对于 X ∖ D $X\setminus D$ 平滑仿射的 log Calabi Yau 对 ( X , D $X,D$ ),满足最大退化假设或包含一个扎里斯基致密环,我们证明在 D 是一个 nef 除数的支持的条件下,由 Gross-Siebert 构造的镜像代数上定义迹形式的结构常数是由 Keel-Yu 定义的天真曲线计数给出的。作为推论,我们推导出,在 X ∖ D $X\setminus D$ 的情况下,格罗斯-西贝特和基尔-尤构建的镜像代数的相等性包含一个扎里斯基致密环。此外,我们还利用这一结果证明了曼德尔针对满足最大退化假设的法诺对提出的镜像猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信