Huaiqiang Liu, Xinyu Wang, Zhiying Liu, Saihanna Jaesong, Jiayue Liu, Qianhui Yang, Ning Wang, Xiaotian Gao, Yarong Feng, Haoxin Li, Jianru Chai, Jialu Zhang, Kexin Li, Frank Yonghong Li
{"title":"Climate gradient-driven intraspecific aggregation propensity linked to interpatch modulation in grassland communities","authors":"Huaiqiang Liu, Xinyu Wang, Zhiying Liu, Saihanna Jaesong, Jiayue Liu, Qianhui Yang, Ning Wang, Xiaotian Gao, Yarong Feng, Haoxin Li, Jianru Chai, Jialu Zhang, Kexin Li, Frank Yonghong Li","doi":"10.1002/ecs2.70013","DOIUrl":null,"url":null,"abstract":"<p>The response of vegetation to climate change on a large scale should be studied at the community level rather than the species level. This necessitates a focused exploration of emerging spatial patterns. Here, we surveyed 264 sites in the Inner Mongolia typical steppe, using the “needling” method to investigate 39,600 clumps formed through the coexistence relationships of dominant species. We found that the effects of slow climate change on grassland communities can be categorized into two general trends: (1) a monotone relationship, characterized by changes in the number of dominant species, compositional diversity, and optimal patch area, and (2) a unimodal relationship, reflected in variations in the number of patches and interspecific associations. The two distinct trends, connected by optimal patch area, concurrently support both the habitat amount hypothesis and the intermediate disturbance hypothesis. These findings suggest that climate change indirectly influences the area and amount of vegetation patches by regulating the arrangement of clumps. Moreover, they indicate that it is the distribution, rather than the number, of species that serves as the front line for plant communities adapting to climate change.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70013","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The response of vegetation to climate change on a large scale should be studied at the community level rather than the species level. This necessitates a focused exploration of emerging spatial patterns. Here, we surveyed 264 sites in the Inner Mongolia typical steppe, using the “needling” method to investigate 39,600 clumps formed through the coexistence relationships of dominant species. We found that the effects of slow climate change on grassland communities can be categorized into two general trends: (1) a monotone relationship, characterized by changes in the number of dominant species, compositional diversity, and optimal patch area, and (2) a unimodal relationship, reflected in variations in the number of patches and interspecific associations. The two distinct trends, connected by optimal patch area, concurrently support both the habitat amount hypothesis and the intermediate disturbance hypothesis. These findings suggest that climate change indirectly influences the area and amount of vegetation patches by regulating the arrangement of clumps. Moreover, they indicate that it is the distribution, rather than the number, of species that serves as the front line for plant communities adapting to climate change.
期刊介绍:
The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.