E. Sanchez-Gomez, R. Séférian, L. Batté, S. Berthet, C. Cassou, B. Dewitte, M. P. Moine M, R. Msadek, C. Prodhomme, Y. Santana-Falcón, L. Terray, A. Voldoire
{"title":"Description and Evaluation of the CNRM-Cerfacs Climate Prediction System (C3PS)","authors":"E. Sanchez-Gomez, R. Séférian, L. Batté, S. Berthet, C. Cassou, B. Dewitte, M. P. Moine M, R. Msadek, C. Prodhomme, Y. Santana-Falcón, L. Terray, A. Voldoire","doi":"10.1029/2023MS004193","DOIUrl":null,"url":null,"abstract":"<p>The CNRM-Cerfacs Climate Prediction System (C3PS) is a new research modeling tool for performing climate reanalyzes and seasonal-to-multiannual predictions for a wide array of Earth system variables. C3PS is based on the CNRM-ESM2-1 model including interactive aerosols and stratospheric chemistry schemes as well as terrestrial and marine biogeochemistry enabling a comprehensive representation of the global carbon cycle. C3PS operates through a seamless coupled initialization for the atmosphere, land, ocean, sea ice and biogeochemistry components that allows a continuum of predictions across seasonal to multiannual time-scales. C3PS has also contributed to the Decadal Climate Prediction Project (DCPP-A) as part of the sixth Coupled Model Intercomparison Project (CMIP6). Here we describe the main characteristics of this novel Earth system-based prediction platform, including the methodological steps for obtaining initial states to produce forecasts. We evaluate the entire C3PS initialization procedure with the most up-to-date observations and reanalyzes over 1960–2021, and we discuss the overall performance of the system in the light of the lessons learned from previous and actual prediction platforms. Regarding the forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. At the multiannual scale, C3PS shows significant predictive skill in surface temperature during the first 2 years after initialization in several regions of the world. C3PS also exhibits potential predictive skill in Net primary production (NPP) and carbon fluxes several years in advance. This expands the possibility of applications of forecasting systems, such as the possibility of performing multiannual predictions of marine ecosystems and carbon cycle.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004193","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The CNRM-Cerfacs Climate Prediction System (C3PS) is a new research modeling tool for performing climate reanalyzes and seasonal-to-multiannual predictions for a wide array of Earth system variables. C3PS is based on the CNRM-ESM2-1 model including interactive aerosols and stratospheric chemistry schemes as well as terrestrial and marine biogeochemistry enabling a comprehensive representation of the global carbon cycle. C3PS operates through a seamless coupled initialization for the atmosphere, land, ocean, sea ice and biogeochemistry components that allows a continuum of predictions across seasonal to multiannual time-scales. C3PS has also contributed to the Decadal Climate Prediction Project (DCPP-A) as part of the sixth Coupled Model Intercomparison Project (CMIP6). Here we describe the main characteristics of this novel Earth system-based prediction platform, including the methodological steps for obtaining initial states to produce forecasts. We evaluate the entire C3PS initialization procedure with the most up-to-date observations and reanalyzes over 1960–2021, and we discuss the overall performance of the system in the light of the lessons learned from previous and actual prediction platforms. Regarding the forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. At the multiannual scale, C3PS shows significant predictive skill in surface temperature during the first 2 years after initialization in several regions of the world. C3PS also exhibits potential predictive skill in Net primary production (NPP) and carbon fluxes several years in advance. This expands the possibility of applications of forecasting systems, such as the possibility of performing multiannual predictions of marine ecosystems and carbon cycle.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.