Toward Answering Federated Spatial Range Queries Under Local Differential Privacy

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Guanghui Feng, Guojun Wang, Tao Peng
{"title":"Toward Answering Federated Spatial Range Queries Under Local Differential Privacy","authors":"Guanghui Feng,&nbsp;Guojun Wang,&nbsp;Tao Peng","doi":"10.1155/2024/2408270","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Federated analytics (FA) over spatial data with local differential privacy (LDP) has attracted considerable research attention recently. Existing solutions for this problem mostly employ a uniform grid (UG) structure, which recursively decomposes the whole spatial domain into fine-grained regions in the distributed setting. In each round, the sampled clients perturb their locations using a random response mechanism with a fixed probability. This approach, however, cannot encode the client’s location effectively and will lead to ill-suited query results. To address the deficiency of existing solutions, we propose LDP-FSRQ, a spatial range query algorithm that relies on a hybrid spatial structure composed of the UG and quad-tree with nonuniform perturbation (NUP) probability to encode and perturb clients’ locations. In each iteration of LDP-FSRQ, each client adopts the quad-tree to encode his/her location into a binary string and uses four local perturbation mechanisms to protect the encoded string. Then, the collector prunes the quad-tree of the current round according to the clients’ reports and shares the pruned tree with the clients of the next round. We demonstrate the application of LDP-FSRQ on Beijing, Landmark, Check-in, and NYC datasets, and the experimental results show that our approach outperforms its competitors in terms of queries’ utility.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2408270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2408270","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated analytics (FA) over spatial data with local differential privacy (LDP) has attracted considerable research attention recently. Existing solutions for this problem mostly employ a uniform grid (UG) structure, which recursively decomposes the whole spatial domain into fine-grained regions in the distributed setting. In each round, the sampled clients perturb their locations using a random response mechanism with a fixed probability. This approach, however, cannot encode the client’s location effectively and will lead to ill-suited query results. To address the deficiency of existing solutions, we propose LDP-FSRQ, a spatial range query algorithm that relies on a hybrid spatial structure composed of the UG and quad-tree with nonuniform perturbation (NUP) probability to encode and perturb clients’ locations. In each iteration of LDP-FSRQ, each client adopts the quad-tree to encode his/her location into a binary string and uses four local perturbation mechanisms to protect the encoded string. Then, the collector prunes the quad-tree of the current round according to the clients’ reports and shares the pruned tree with the clients of the next round. We demonstrate the application of LDP-FSRQ on Beijing, Landmark, Check-in, and NYC datasets, and the experimental results show that our approach outperforms its competitors in terms of queries’ utility.

Abstract Image

在局部差异隐私条件下回答联合空间范围查询
具有局部差分隐私(LDP)的空间数据联合分析(FA)最近引起了相当多的研究关注。针对这一问题的现有解决方案大多采用均匀网格(UG)结构,在分布式环境中将整个空间域递归分解为细粒度区域。在每一轮中,被采样的客户端使用随机响应机制以固定概率扰动其位置。然而,这种方法无法有效编码客户端的位置,会导致不合适的查询结果。针对现有解决方案的不足,我们提出了一种空间范围查询算法 LDP-FSRQ,它依赖于由 UG 和四叉树组成的混合空间结构,以非均匀扰动(NUP)概率对客户位置进行编码和扰动。在 LDP-FSRQ 的每次迭代中,每个客户端都采用四叉树将其位置编码为二进制字符串,并使用四种局部扰动机制来保护编码字符串。然后,收集器根据客户端的报告修剪本轮的四叉树,并与下一轮的客户端共享修剪后的四叉树。我们在北京、地标、签到和纽约数据集上演示了 LDP-FSRQ 的应用,实验结果表明我们的方法在查询效用方面优于竞争对手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信