Implementation of WRF-Urban Asymmetric Convective Model (UACM) for Simulating Urban Fog Over Delhi, India

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Utkarsh Prakash Bhautmage, Sachin D. Ghude, Avinash N. Parde, Harsh G. Kamath, Narendra Gokul Dhangar, Jonathan Pleim, Michael Mau Fung Wong, Sandeep Wagh, Rakesh Kumar, Dev Niyogi, M. Rajeevan
{"title":"Implementation of WRF-Urban Asymmetric Convective Model (UACM) for Simulating Urban Fog Over Delhi, India","authors":"Utkarsh Prakash Bhautmage,&nbsp;Sachin D. Ghude,&nbsp;Avinash N. Parde,&nbsp;Harsh G. Kamath,&nbsp;Narendra Gokul Dhangar,&nbsp;Jonathan Pleim,&nbsp;Michael Mau Fung Wong,&nbsp;Sandeep Wagh,&nbsp;Rakesh Kumar,&nbsp;Dev Niyogi,&nbsp;M. Rajeevan","doi":"10.1029/2024JD040760","DOIUrl":null,"url":null,"abstract":"<p>Accurate fog prediction in densely urbanized cities poses a challenge due to the complex influence of urban morphology on meteorological conditions in the urban roughness sublayer. This study implemented a coupled WRF-Urban Asymmetric Convective Model (WRF-UACM) for Delhi, India, integrating explicit urban physics with Sentinel-updated USGS land-use and urban morphological parameters derived from the UT-GLOBUS dataset. When evaluated against the baseline Asymmetric Convective Model (WRF-BACM) using Winter Fog Experiment (WiFEX) data, WRF-UACM significantly improved urban meteorological variables such as diurnal variations in 10-m wind speed, 2-m air temperature (T2), and 2-m relative humidity (RH2) during a fog event. UACM also demonstrates improved accuracy in simulating temperature and significantly reducing biases for wind speed and daytime RH2 under clear sky conditions. UACM reproduced the nighttime urban heat island effect within the city, showing realistic diurnal heating and cooling patterns that are important for accurate fog onset and duration. UACM effectively predicts the onset, evolution, and dissipation of fog, aligning well with observed data and satellite imagery. Compared to WRF-BACM, WRF-UACM reduces the cold bias soon after sunset, thus improving the fog onset error by ∼3 hr. This study highlights the UACM's potential to improve fog prediction and its application in operational settings. With further investigation into different fog types, the UACM can provide crucial insights for preventive measures and reducing disruptions in urban areas.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD040760","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate fog prediction in densely urbanized cities poses a challenge due to the complex influence of urban morphology on meteorological conditions in the urban roughness sublayer. This study implemented a coupled WRF-Urban Asymmetric Convective Model (WRF-UACM) for Delhi, India, integrating explicit urban physics with Sentinel-updated USGS land-use and urban morphological parameters derived from the UT-GLOBUS dataset. When evaluated against the baseline Asymmetric Convective Model (WRF-BACM) using Winter Fog Experiment (WiFEX) data, WRF-UACM significantly improved urban meteorological variables such as diurnal variations in 10-m wind speed, 2-m air temperature (T2), and 2-m relative humidity (RH2) during a fog event. UACM also demonstrates improved accuracy in simulating temperature and significantly reducing biases for wind speed and daytime RH2 under clear sky conditions. UACM reproduced the nighttime urban heat island effect within the city, showing realistic diurnal heating and cooling patterns that are important for accurate fog onset and duration. UACM effectively predicts the onset, evolution, and dissipation of fog, aligning well with observed data and satellite imagery. Compared to WRF-BACM, WRF-UACM reduces the cold bias soon after sunset, thus improving the fog onset error by ∼3 hr. This study highlights the UACM's potential to improve fog prediction and its application in operational settings. With further investigation into different fog types, the UACM can provide crucial insights for preventive measures and reducing disruptions in urban areas.

实施 WRF-城市非对称对流模型(UACM)模拟印度德里上空的城市大雾
由于城市形态对城市粗糙度子层气象条件的复杂影响,在城市化密集的城市中进行准确的雾预测是一项挑战。本研究针对印度德里实施了 WRF-城市非对称对流耦合模型(WRF-UACM),将显式城市物理学与哨兵更新的 USGS 土地利用和从 UT-GLOBUS 数据集获得的城市形态参数进行了整合。在使用冬季大雾实验(WiFEX)数据与基准非对称对流模型(WRF-BACM)进行评估时,WRF-UACM 显著改善了城市气象变量,如大雾事件中 10 米风速、2 米气温 (T2) 和 2 米相对湿度 (RH2) 的昼夜变化。UACM 还提高了模拟温度的精度,并显著减少了晴天条件下风速和白天相对湿度 RH2 的偏差。UACM 重现了城市中的夜间城市热岛效应,显示了逼真的昼夜加热和冷却模式,这对于准确预测雾的开始和持续时间非常重要。UACM 有效地预测了雾的开始、演变和消散,与观测数据和卫星图像非常吻合。与 WRF-BACM 相比,WRF-UACM 减少了日落后不久的冷偏差,从而将起雾误差提高了 3 小时。这项研究凸显了 UACM 在改善雾预测方面的潜力及其在业务环境中的应用。随着对不同类型雾的进一步研究,UACM 可为城市地区的预防措施和减少干扰提供重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信