{"title":"Enhancing Weather Forecast Accuracy Through the Integration of WRF and BP Neural Networks: A Novel Approach","authors":"Zeyang Liu, Jing Zhang, Yadong Yang, Yaping Wang, Wangjun Luo, Xiancun Zhou","doi":"10.1029/2024EA003613","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>In the past century, scholars from both domestic and international communities have delved into the study of numerical weather prediction models to promptly understand meteorological factors and mitigate the impacts of extreme weather events on humanity. Effective and precise prediction models enable the forecasting of meteorological conditions in the upcoming days, empowering individuals to implement proactive measures to minimize the adverse effects of extreme weather (Liang et al., 2021). The WRF (Weather Research and Forecasting) modeling system is commonly used for forecasting meteorological elements. However, uncertainties terribly hamper the correctness of the forecasting results. To this end, the present study was conducted to build a secondary model on the basis of the WRF forecast model. The WRF-BPNN model was proposed for verification after constructing the network, the temperature vertical profile and the mixing ratio vertical profile were predicted, and the results on the validation set were tested. The results showed that the WRF-BPNN model could effectively predict the temperature profile and mixing ratio profile, presenting better performance than the traditional WRF model.</p>\n </section>\n </div>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003613","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003613","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the past century, scholars from both domestic and international communities have delved into the study of numerical weather prediction models to promptly understand meteorological factors and mitigate the impacts of extreme weather events on humanity. Effective and precise prediction models enable the forecasting of meteorological conditions in the upcoming days, empowering individuals to implement proactive measures to minimize the adverse effects of extreme weather (Liang et al., 2021). The WRF (Weather Research and Forecasting) modeling system is commonly used for forecasting meteorological elements. However, uncertainties terribly hamper the correctness of the forecasting results. To this end, the present study was conducted to build a secondary model on the basis of the WRF forecast model. The WRF-BPNN model was proposed for verification after constructing the network, the temperature vertical profile and the mixing ratio vertical profile were predicted, and the results on the validation set were tested. The results showed that the WRF-BPNN model could effectively predict the temperature profile and mixing ratio profile, presenting better performance than the traditional WRF model.
期刊介绍:
Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.