Exploring Geometric Chirality in Nanocrystals for Boosting Solar-to-Hydrogen Conversion

Wenlong Fu, Qi Gao, Chunyang Zhang, Lili Tan, Biao Jiang, Chengyu Xiao, Prof. Maochang Liu, Prof. Peng-peng Wang
{"title":"Exploring Geometric Chirality in Nanocrystals for Boosting Solar-to-Hydrogen Conversion","authors":"Wenlong Fu,&nbsp;Qi Gao,&nbsp;Chunyang Zhang,&nbsp;Lili Tan,&nbsp;Biao Jiang,&nbsp;Chengyu Xiao,&nbsp;Prof. Maochang Liu,&nbsp;Prof. Peng-peng Wang","doi":"10.1002/ange.202411871","DOIUrl":null,"url":null,"abstract":"<p>Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C<sub>3</sub>N<sub>4</sub> nanosheets, significantly boosting photocatalytic H<sub>2</sub> evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C<sub>3</sub>N<sub>4</sub>-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H<sub>2</sub> evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202411871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancing catalyst design is pivotal for the enhancement of photocatalytic processes in renewable energy conversion. The incorporation of structural chirality into conventional inorganic solar hydrogen nanocatalysts promises a significant transformation in catalysis, a feature absent in this field. Here we unveil the unexplored potential of geometric chirality by creating a chiral composite that integrates geometric chiral Au nanoparticles (NPs) with two-dimensional C3N4 nanosheets, significantly boosting photocatalytic H2 evolution beyond the achiral counterparts. The superior performance is driven by the geometric chirality of Au NPs, which facilitates efficient charge carrier separation through the favorable C3N4-chiral Au NP interface and chiral induced spin polarization, and exploits high-activity facets within the concave surfaces of chiral Au NPs. The resulting synergistic effect leads to a remarkable increase in photocatalytic H2 evolution, with an apparent quantum yield of 44.64 % at 400 nm. Furthermore, we explore the selective polarized photo-induced carrier separation behavior, revealing a distinct chiral-dependent photocatalytic HER performance. Our work advances the design and utilization of chiral inorganic nanostructures for superior performance in energy conversion processes.

Abstract Image

探索纳米晶体中的几何手性,促进太阳能制氢转换
催化剂设计的进步对于提高可再生能源转换中的光催化过程至关重要。在传统的无机太阳能氢纳米催化剂中加入结构手性有望实现催化领域的重大变革,而这正是该领域所缺乏的。在这里,我们通过创建一种手性复合材料,将几何手性金纳米粒子(NPs)与二维 C3N4 纳米片整合在一起,揭示了几何手性尚未开发的潜力,从而大大提高了光催化 H2 演化的能力,超越了非手性对应物。金纳米粒子的几何手性促进了电荷载流子通过有利的 C3N4 手性金纳米粒子界面和手性诱导的自旋极化进行高效分离,并利用了手性金纳米粒子凹面内的高活性面,从而实现了卓越的性能。由此产生的协同效应显著提高了光催化 H2 的进化能力,在 400 纳米波长下的表观量子产率达到 44.64%。此外,我们还探索了选择性极化光诱导载流子分离行为,揭示了独特的手性依赖光催化 HER 性能。我们的工作推动了手性无机纳米结构的设计和利用,使其在能量转换过程中表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信